1887
Volume 28, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

A revised stratigraphic framework for the Messinian succession of Cyprus is proposed demonstrating that the three‐stage model for the Messinian salinity crisis recently established for the Western Mediterranean also applies to the Eastern Mediterranean, at least for its marginal basins. This analysis is based on a multidisciplinary study of the Messinian evaporites and associated deposits exposed in the Polemi, Pissouri, Maroni/Psematismenos and Mesaoria basins. Here, we document for the first time that the base of the unit usually referred to the ‘Lower Evaporites’ in Cyprus does not actually correspond to the onset of the Messinian salinity crisis. The basal surface of this unit rather corresponds to a regional‐scale unconformity, locally associated with an angular discordance, and is related to the erosion and resedimentation of primary evaporites deposited during the first stage of the Messinian salinity crisis. This evidence suggests that the ‘Lower Evaporites’ of the southern basins of Cyprus actually belong to the second stage of the Messinian salinity crisis; they can be thus ascribed to the Resedimented Lower Gypsum unit that was deposited between 5.6 and 5.5 Ma and is possibly coeval to the halite deposited in the northern Mesaoria basin. Primary, evaporites of the first stage of the Messinian salinity crisis were not preserved in Cyprus basins. Conversely, shallow‐water primary evaporites deposited during the third stage of the Messinian salinity crisis are well preserved; these deposits can be regarded as the equivalent of the Upper Gypsum of Sicily. Our study documents that the Messinian stratigraphy shows many similarities between the Western and Eastern Mediterranean marginal basins, implying a common and likely coeval development of the Messinian salinity crisis. This could be reflected also in intermediate and deep‐water basins; we infer that the Lower Evaporites seismic unit in the deep Eastern Mediterranean basins could well be mainly composed of clastic evaporites and that its base could correspond to the Messinian erosional surface.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12107
2015-01-12
2024-04-25
Loading full text...

Full text loading...

References

  1. Aksu, A.E., Hall, J. & Yaltirak, C. (2008) Miocene‐Recent evolution of Anaximander Mountains and Finike Basin at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Mar. Geol., 258, 24–47.
    [Google Scholar]
  2. Angelone, C., Colombero, S., Esu, D., Giuntelli, P., Marcolini, F., Pavia, M., Trenkwalder, S., Van Den Hoek Ostende, L.W., Zunino, M. & Pavia, G. (2011) Moncucco Torinese, a new post‐evaporitic Messinian fossiliferous site from Piedmont (NW Italy). Neues. Jahrb. Geol. Palaontol. Abh., 259/1, 89–104.
    [Google Scholar]
  3. Bagnall, P.S. (1960) The geology and mineral resources of the Pano Lefkara‐Larnaca area. Geol. Surv. Depart. Cyprus Mem., 5, 116.
    [Google Scholar]
  4. Bellanca, A., Caruso, A., Ferruzza, G., Neri, R., Rouchy, J.M. & Sprovieri, M. (2001) Transition from marine to hypersaline conditions in the Messinian Tripoli Formation from the marginal areas of the central Sicilian Basin. Sed. Geol., 140, 87–105.
    [Google Scholar]
  5. Bernardi, E. (2013) Integrated stratigraphy of the northernmost record of the Messinian salinity crisis: new insight from the Tertiary Piedmont Basin. PhD Thesis, University of Turin, Italy.
  6. Bertoni, C. & Cartwright, J.A. (2006) Controls on the basin‐wide architecture of the Messinian evaporites on the Levant margin (Eastern Mediterranean). Sed. Geol., 188–189, 93–114.
    [Google Scholar]
  7. Bertoni, C. & Cartwright, J.A. (2007) Major erosion at the end of the Messinian Salinity Crisis: evidence from the Levant Basin, Eastern Mediterranean. Basin Res., 19, 1–18.
    [Google Scholar]
  8. Blanc‐Valleron, M.M., Pierre, C., Caulet, J.P., Caruso, A., Rouchy, J.M., Cespuglio, G., Sprovieri, R., Pestrea, S. & di Stefano, E. (2002) Sedimentary, stable isotope and micropaleontological records of paleoceanographic change in the Messinian Tripoli Formation (Sicily, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol., 185, 255–286.
    [Google Scholar]
  9. Bridge, C., Calon, T.J., Hall, J. & Aksu, A.E. (2005) Salt tectonics in two convergent‐margin basins of the Cyprus arc, Northeastern Mediterranean. Mar. Geol., 221/1–4, 223–259.
    [Google Scholar]
  10. Calon, T.J., Aksu, A.E. & Hall, J. (2005) Varying tectonic control on basin development at an active microplate margin: Latakia Basin, Eastern Mediterranean. Mar. Geol., 221/1–4, 15–60.
    [Google Scholar]
  11. Carnevale, G., Landini, W. & Sarti, G. (2006) Mare versus Lago‐mare: marine fishes and the Mediterranean environment at the end of the Messinian Salinity Crisis. J. Geol. Soc. London, 163, 75–80.
    [Google Scholar]
  12. Cartwright, J.A. & Jackson, M.P.A. (2008) Initiation of gravitational collapse of an evaporitic basin margin: the Messinian saline giant, Levant Basin, eastern Mediterranean. Geol. Soc. Am. Bull., 120, 399–413.
    [Google Scholar]
  13. Chaumillon, E., Mascle, J. & Hoffmann, H.J. (1996) Deformation of the western Mediterranean Ridge: importance of Messinian evaporitic formations. Tectonophysics, 263, 163–190.
    [Google Scholar]
  14. CIESM
    CIESM . (2008) The Messinian salinity crisis from Mega‐deposits to Microbiology. A consensus report. CIESM Workshop Monograph, 33, 168.
    [Google Scholar]
  15. DeLange, G.J. & Krijgsman, W. (2010) Messinian salinity crisis: a novel unifying shallow gypsum/deep dolomite formation mechanism. Mar. Geol., 275, 273–277.
    [Google Scholar]
  16. Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Gennari, R., Irace, A., Lozar, F., Lugli, S., Manzi, V., Natalicchio, M., Roveri, M. & Violanti, D. (2011) The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): the Alba section revisited. Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 238–255.
    [Google Scholar]
  17. Dela Pierre, F., Clari, P., Bernardi, E., Natalicchio, M., Cost, E., Cavagna, S., Lozar, F., Lugli, S., Manzi, V., Roveri, M. & Violanti, D. (2012) Messinian carbonate‐rich beds of the Tertiary Piedmont Basin (NW Italy): microbially‐mediated products straddling the onset of the salinity crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol., 344–345, 78–93.
    [Google Scholar]
  18. Eaton, S. & Robertson, A.H.F. (1993) The Miocene Pakhna Formation, southern Cyprus and its relationship to the Neogene tectonic evolution of the Eastern Mediterranean. Sed. Geol., 86, 273–296.
    [Google Scholar]
  19. Esu, D. (2007) Latest Messinian “Lago‐Mare” Lymnocardiinae from Italy: Close relations with the Pontian fauna from the Dacic Basin. Geobios, 40/3, 291–302.
    [Google Scholar]
  20. Esu, D. & Girotti, O. (2008) The late Messinian Lago‐Mare molluscan assemblage from the Trave Horizon (Colombacci Fm) at Pietralacroce (Ancona, Central Italy). Boll. Soc. Paleontol. Ital., 47/2, 123–129.
    [Google Scholar]
  21. Esu, D. & Taviani, M. (1989) Oligohaline mollusc faunas of the Colombacci Formation (upper Messinian) from an exceptional fossil vertebrate site in the Romagna Apennines: monticino Quarry (Brisighella, N Italy). Boll. Soc. Paleontol. Italiana, 28, 265–270.
    [Google Scholar]
  22. Flecker, R. & Ellam, R.M. (2006) Identifying Late Miocene episodes of connection and isolation in the Mediterranean‐Paratethyan realm using Sr isotopes. Sed. Geol., 188–189, 189–203.
    [Google Scholar]
  23. Flecker, R., de Villiers, S. & Ellam, R.M. (2002) Modelling the effect of evaporation on the salinity–87Sr/86Sr relationship in modern and ancient marginal‐marine systems: the Mediterranean Messinian Salinity Crisis. Earth Planet. Sci. Lett., 203, 221–233.
    [Google Scholar]
  24. Follows, E.J. (1990) Sedirnentology and tectonic setting of Miocene reef and related sediments in Cyprus. PhD Thesis, Edinburgh University, 384 pp.
  25. Follows, E.J. (1992) Patterns of reef sedimentation and diagenesis in Cyprus. Sed. Geol., 79, 225–253.
    [Google Scholar]
  26. Follows, E.J., Robertson, A.H.F. & Scoffin, T.P. (1996) Tectonic controls on Miocene reefs and related carbonate facies in Cyprus. In: Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions. SEPM Concepts in Sedimentology and Paleontology (Eds E.K.Franseen , M.Esteban , W.C.Ward & J.‐M.Rouchy ), 5, pp. 295–325. SEPM (Society for Sedimentary Geology), Tulsa, OK.
    [Google Scholar]
  27. Gass, T.M. (1960) The geology and mineral resources of the Dhali area. Geol. Surv. Depart. Cyprus Mem., 4, 116.
    [Google Scholar]
  28. Gennari, R., Iaccarino, S.M., Di Stefano, A., Sturiale, G., Cipollari, P., Manzi, V., Roveri, M. & Cosentino, D. (2008) The Messinian–Zanclean boundary in the Northern Apennine. Stratigraphy, 5, 307–322.
    [Google Scholar]
  29. Gennari, R., Manzi, V., Angeletti, L., Bertini, A., Biffi, U., Ceregato, A., Faranda, C., Gliozzi, E., Lugli, S., Menichetti, E., Rosso, A., Roveri, M. & Taviani, M. (2013) A shallow water record of the onset of the Messinian salinity crisis in the Adriatic foredeep (Legnagnone section, Northern Apennines). Palaeogeogr. Palaeoclimatol. Palaeoecol., 386, 145–164.
    [Google Scholar]
  30. Gliozzi, E. & Grossi, F. (2008) Late Messinian lago‐mare ostracod palaeoecology: a correspondence analysis approach. Palaeogeogr. Palaeoclimatol. Palaeoecol., 264, 288–295.
    [Google Scholar]
  31. Guerra‐Merchan, A., Serrano, F., Garces, M., Gofas, S., Esu, D., Gliozzi, E. & Grossi, F. (2010) Messinian Lago‐Mare deposits near the Strait of Gibraltar (Malaga Basin, S Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol., 285, 264–276.
    [Google Scholar]
  32. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O. & Ben‐Avraham, B. (2013) Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis. Earth Planet. Sci. Lett., 379, 108–119.
    [Google Scholar]
  33. Hilgen, F.J. & Krijgsman, W. (1999) Cyclostratigraphy and astrochronology of the Tripoli diatomite formation (pre‐evaporite Messinian, Sicily, Italy). Terra Nova, 11, 16–22.
    [Google Scholar]
  34. Hilgen, F.J., Kuiper, K., Krijgsman, W., Snel, E. & van der Laan, E. (2007) Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis. Stratigraphy, 4, 231–238.
    [Google Scholar]
  35. Hübscher, C., Cartwright, J., Cypionka, H., de Lange, G., Robertson, A., Suc, J.P. & Urai, J. (2007) Global look at Salt Giants. EOS, 88(16), 177–179.
    [Google Scholar]
  36. Huguen, C., Mascle, J., Chaumillon, E., Woodside, J.M., Benkhelil, J., Kopf, A. & Volkonskaia, A. (2001) Deformational styles of the Eastern Mediterranean ridge and surroundings, from combined swath‐mapping and seismic reflection profiling. Tectonophysics, 343, 21–47.
    [Google Scholar]
  37. Karakitsios, V., Roveri, M., Lugli, S., Manzi, V., Gennari, R., Antonarakou, A., Triantaphyllou, M., Agiadi, K. & Kontakiotis, G. (2013) Remarks on the Messinian evaporites of Zakynthos Island (Ionian Sea, Eastern Mediterranean). Bull. Geol. Soc. Greece, XLVII.
    [Google Scholar]
  38. Kinnaird, T.C. & Robertson, A.H.F. (2013) Tectonic and sedimentary response to subduction and incipient continental collision in southern Cyprus, easternmost Mediterranean region. Geol. Soc. Spec. Publ., 372, 585–614.
    [Google Scholar]
  39. Kinnaird, T.C., Robertson, A.H.F. & Morris, A. (2011) Timing of uplift of the Troodos Massif (Cyprus) constrained by sedimentary and magnetic polarity evidence. J. Geol. Soc. London, 168, 457–470.
    [Google Scholar]
  40. Kouwenhoven, T.J., Morigi, C., Negri, A., Giunta, S., Krijgsman, W. & Rouchy, J.‐M. (2006) Paleoenvironmental evolution of the eastern Mediterranean during the Messinian: constraints from integrated microfossil data of the Pissouri Basin (Cyprus). Mar. Micropaleontol., 60, 17–44.
    [Google Scholar]
  41. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes, and progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  42. Krijgsman, W., Blanc‐Valleron, M.M., Flecker, R., Hilgen, F.J., Kouwenhoven, T.J., Orszag‐Sperber, F. & Rouchy, J.M. (2002) The onset of the Messinian salinity crisis in the eastern Mediterranean (Pissouri basin, Cyprus). Earth Planet. Sci. Lett., 194(3–4), 299–310.
    [Google Scholar]
  43. Krijgsman, W., Gaboardi, S., Hilgen, F.J., Iaccarino, S., de Kaenel, E. & van der Laan, E. (2004) Revised astrochronology for the Ain el Beida section (Atlantic Morocco): no glacioeustatic control for the onset of the Messinian Salinity Crisis. Stratigraphy, 1, 87–101.
    [Google Scholar]
  44. Le Pichon, X., Lallemant, S.J., Chamot‐Rooke, N., Lemeur, D. & Pascal, G. (2002) The Mediterranean Ridge backstop and the Hellenic nappes. Mar. Geol., 186, 111–125.
    [Google Scholar]
  45. Lofi, J., Gorini, C., Berné, S., Clauzon, G., Tadeu Dos Reis, A., Ryan, W.B.F. & Steckler, M. (2005) Erosional processes and paleo‐environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Mar. Geol., 217, 1–30.
    [Google Scholar]
  46. Lofi, J., Déverchère, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P., Loncke, L., Maillard, A., Sage, F. & Thinon, I. (2011) Seismic atlas of the “Messinian Salinity Crisis” markers in the Mediterranean and Black seas. Commission for the Geological Map of the World and Memoires de la Société Géologique de France, Nouvelle Série, , p. 72.
  47. Lord, A.R., Harrison, R.W., Boudagher‐Fadel, M., Stone, B.D. & Varol, O. (2009) Miocene mass‐transport sediments, Troodos Massif, Cyprus. Proc. Geol. Assoc., 120, 133–138.
    [Google Scholar]
  48. Lowe, D.R. & Guy, M. (2000) Slurry‐flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47, 31–70.
    [Google Scholar]
  49. Lozar, F., Violanti, D., Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Irace, A., Martinetto, E. & Trenkwalder, S. (2010) Calcareous nannofossils and foraminifers herald the Messinian Salinity Crisis: the Pollenzo section (Alba, Cuneo; NW Italy). Geobios, 43, 21–32.
    [Google Scholar]
  50. Lugli, S., Schreiber, B.C. & Triberti, B. (1999) Giant polygons in the Realmontemine (Agrigento, Sicily): evidence for the desiccation of a Messinian halite basin. J. Sediment. Res., 69, 764–771.
    [Google Scholar]
  51. Lugli, S., Manzi, V., Roveri, M. & Schreiber, B.C. (2010) The Primary Lower Gypsum in the Mediterranean: a new facies interpretation for the first stage of the Messinian salinity crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 83–99.
    [Google Scholar]
  52. Lugli, S., Gennari, R., Gvirtzman, Z., Manzi, V., Roveri, M. & Schreiber, B.C. (2013) Evidence of clastic evaporites in the canyons of the Levant Basin (Israel): implications for the Messinian Salinity Crisis. J. Sediment. Res., 83, 942–954.
    [Google Scholar]
  53. Maillard, A., Huebsher, C., Benkhelil, J. & Tahchi, E. (2010) Deformed Messinian markers in the Cyprus Arc: tectonic and/or Messinian salinity crisis indicators?Basin Res., 23–2, 146–170.
    [Google Scholar]
  54. Manzi, V., Lugli, S., Ricci Lucchi, F. & Roveri, M. (2005) Deep‐water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): did the Mediterranean ever dry out?Sedimentology, 52, 875–902.
    [Google Scholar]
  55. Manzi, V., Roveri, M., Gennari, R., Bertini, A., Biffi, U., Giunta, S., Iaccarino, S.M., Lanci, L., Lugli, S., Negri, A., Riva, A., Rossi, M.E. & Taviani, M. (2007) The deep‐water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: the Fanantello section (Northern Apennines, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol., 251, 470–499.
    [Google Scholar]
  56. Manzi, V., Lugli, S., Roveri, M. & Schreiber, B.C. (2009) A new facies model for the Upper Gypsum of Sicily (Italy): chronological and palaeoenvironmental constraits for the Messinian salinity crisis in the Mediterranean. Sedimentology, 56, 1937–1960.
    [Google Scholar]
  57. Manzi, V., Lugli, S., Roveri, M., Schreiber, B.C. & Gennari, R. (2011) The Messinian “Calcare di Base” (Sicily, Italy) revisited. GSA Bull., 123(1–2), 347–370.
    [Google Scholar]
  58. Manzi, V., Gennari, R., Lugli, S., Roveri, M., Scafetta, N. & Schreiber, B.C. (2012) High‐frequency cyclicity in the Mediterranean Messinian evaporites: evidence for solar‐lunar climate forcing. J. Sediment. Res., 82, 991–1005.
    [Google Scholar]
  59. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M. & Sierro, F.J. (2013) Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, 315–322.
    [Google Scholar]
  60. Mascle, J. & Chaumillon, E. (1998) An overview of Mediterranean Ridge collisional accretionary complex as deduced from multichannel seismic data. Geo‐Mar. Lett., 18, 81–89.
    [Google Scholar]
  61. McCallum, J.E. & Robertson, A.H.F. (1995) Sedimentology of two fan delta systems in the Pliocene‐Pleistocene of the Mesaoria Basin, Cyprus. Sed. Geol., 98, 215–244.
    [Google Scholar]
  62. McCay, G.A. & Robertson, A.H.F. (2013) Upper Miocene‐Pleistocene deformation of the Girne (Kyrenia) Range and Dar Dere (Ovgos) lineaments, northern Cyprus: role in collision and tectonic escape in the easternmost Mediterranean region. Geol. Soc. Spec. Publ., 372, 421–445.
    [Google Scholar]
  63. Merle, D., Lauriat‐Rage, A., Gaudant, J., Pestrea, S., Courme‐Rault, M.D., Zorn, I., Blanc‐Valleron, M.‐M., Rouchy, J.M., Orszag‐Sperber, F. & Krijgsman, W. (2002) Les paléopeuplements marins du Messinien pré‐évaporitique de Pissouri (Chypre, Méditerranée orientale): aspects paléoécologiques de la crise de salinité messinienne. Geodiversitas, 24, 669–689.
    [Google Scholar]
  64. Morigi, C., Negri, A., Giunta, S., Kouwenhoven, T., Krijgsman, W., Blanc‐Valleron, M.‐M., Orszag‐Sperber, F. & Rouchy, J.‐M. (2007) Integrated quantitative biostratigraphy of the latest Tortonian‐early Messinian Pissouri section (Cyprus): an evaluation of calcareous plankton bioevents. Geobios, 40/3, 267–279.
    [Google Scholar]
  65. Omodeo‐Salè, S., Gennari, R., Lugli, S., Manzi, V. & Roveri, M. (2012) Tectonic and climatic control on the Late Messinian sedimentary evolution of the Nijar Basin (Betic Cordillera, Southern Spain). Basin Res., 24, 314–337.
    [Google Scholar]
  66. Orszag‐Sperber, F., Caruso, A., Blanc‐Valleron, M.M., Merle, D. & Rouchy, J.M. (2009) The onset of the Messinian salinity crisis: insights from Cyprus sections. Sed. Geol., 217, 52–64.
    [Google Scholar]
  67. Pantazis, T.M. (1967) The geology and mineral resources of the Pharmakas – Kalavasos area. Geol. Surv. Depart. Cyprus Mem., 8, 190.
    [Google Scholar]
  68. Payne, A.S. & Robertson, A.H.F. (1995) Neogene supra‐subduction zone extension in the Polis graben system, west Cyprus. J. Geol. Soc. London, 152, 613–628.
    [Google Scholar]
  69. Robertson, A.H.F. (1976) Pelagic chalks and calciturbidites from the lower Tertiary of the Troodos Massif, Cyprus. J. Sediment. Res., 46, 1007–1016.
    [Google Scholar]
  70. Robertson, A.H.F. (1998) Late Miocene paleoenvironments and tectonic setting of the southern margin of Cyprus and the Eratosthenes seamount. Proc. Ocean Drill. Prog. Sci. Results, 160, 453–464.
    [Google Scholar]
  71. Robertson, A.H.F., Eaton, S., Follows, E.J. & Payne, A.S. (1995) Depositional processes and basin analysis of Messinian evaporites in Cyprus. Terra Nova, 7, 233–253.
    [Google Scholar]
  72. Rouchy, J.M. (1982) La crise evaporitique messinienne de Mediterranee: nouvelles propositions pour une interpretation genetique. Thesis, Mem, p. 280. Mus. Natn. Hist. Nat, Paris.
    [Google Scholar]
  73. Rouchy, J.M. & Caruso, A. (2006) The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sed. Geol., 188, 35–67.
    [Google Scholar]
  74. Rouchy, J.M., Orszag‐Sperber, F., Blanc‐Valleron, M.M., Pierre, C., Rivière, M., Combourieu‐Nebout, N. & Panayides, I. (2001) Paleoenvironmental changes at the Messinian‐Pliocene boundary in the eastern Mediterranean: southern Cyprus basins. Sed. Geol., 145, 93–117.
    [Google Scholar]
  75. Roveri, M. & Manzi, V. (2006) The Messinian salinity crisis: looking for a new paradigm?Palaeogeogr. Palaeoclimatol. Palaeoecol., 238, 386–398.
    [Google Scholar]
  76. Roveri, M., Manzi, V., Bassetti, M.A., Merini, M. & Ricci Lucchi, F. (1998) Stratigraphy of the Messinian post‐evaporitic stage in eastern‐Romagna (northern Apennines, Italy). Giorn. Geol., 60, 119–142.
    [Google Scholar]
  77. Roveri, M., Bassetti, M.A. & Ricci Lucchi, F. (2001) The Mediterranean Messinian Salinity Crisis: an Apennine foredeep perspective. Sediment. Geol., 140, 201–214.
    [Google Scholar]
  78. Roveri, M., Manzi, V., Ricci Lucchi, F. & Rogledi, S. (2003) Sedimentary and tectonic evolution of the Vena del Gesso basin (Northern Apennines, Italy): implications for the onset of the Messinian salinity crisis. Geol. Soc. Am. Bull., 115, 387–405.
    [Google Scholar]
  79. Roveri, M., Lugli, S., Manzi, V. & Schreiber, B.C. (2008a) The Messinian Sicilian stratigraphy revisited: toward a new scenario for the Messinian salinity crisis. Terra Nova, 20, 483–488.
    [Google Scholar]
  80. Roveri, M., Lugli, S., Manzi, V. & Schreiber, B.C. (2008b) The Messinian salinity crisis: a sequence –stratigraphic approach. Geoacta Spec. Publ., 1, 169–190.
    [Google Scholar]
  81. Roveri, M., Bertini, A., Cosentino, D., Di Stefano, A., Gennari, R., Gliozzi, E., Grossi, F., Iaccarino, S.M., Lugli, S., Manzi, V. & Taviani, M. (2008c) A high‐resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy, 5, 323–342.
    [Google Scholar]
  82. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F.J., Bertini, A., Camerlenghi, A., De Lange, G.J., Govers, R., Hilgen, F.J., Hubscher, C., Meijer, P.T.H. & Stoica, M. (2014a) The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Mar. Geol., doi: 10.1016/j.margeo.2014.02.002.
    [Google Scholar]
  83. Roveri, M., Lugli, S., Manzi, V., Gennari, R. & Schreiber, B.C. (2014b) High‐resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation. Mar. Geol., 349, 113–125.
    [Google Scholar]
  84. Roveri, M., Manzi, V., Bergamasco, A., Falcieri, F., Gennari, R. & Lugli, S. (2014c) Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity crisis. Am. J. Sci., 314, 751–784.
    [Google Scholar]
  85. Sierro, F.J., Krijgsman, W., Hilgen, F.J. & Flores, J.A. (2001) The Abad composite (SE Spain): a Mediterranean reference section for the Messinian and the Astronomical Polarity Time Scale (APTS). Palaeogeogr. Palaeoclimatol. Palaeoecol., 168, 143–172.
    [Google Scholar]
  86. Stow, D.A.V., Braakenburg, N.E. & Xenophontos, C. (1995) The Pissouri Basin fan‐delta complex, southwestern Cyprus. Sed. Geol., 98, 245–262.
    [Google Scholar]
  87. Sturani, C. (1976) Messinian facies in the Piedmont basin. Mem. Soc. Geol. Ital., 16, 11–25.
    [Google Scholar]
  88. Taviani, M., Remia, A., Esu, D. & Sami, M. (2007) Messinian Lago‐Mare mollusc fauna from the Gorgona Island slope, Tyrrhenian Sea. Geobios, 40, 351–358.
    [Google Scholar]
  89. Ten Veen, J.H., Woodside, M., Zitter, T.A.C., Dumont, J.F., Mascle, J. & Volkonskaia, A. (2004) Neotectonic evolution of the Anaximander Mountains at the junction of the Hellenic and Cyprus Arcs. Tectonophysics, 391, 35–65.
    [Google Scholar]
  90. Van Couvering, J.A., Castradori, D., Cita, M.B., Hilgen, F.J. & Rio, D. (2000) The base of the Zanclean Stage and of the Pliocene Series. Episodes, 23, 179–187.
    [Google Scholar]
  91. Van der Laan, E., Snel, E., De Kaenel, E., Hilgen, F.J. & Krijgsman, W. (2006) No major deglaciation across the Miocene‐Pliocene boundary: integrated stratigraphy and astronomical tuning of the Loulja sections (Bou Regreg area, NW Morocco). Paleoceanography, 21, PA3011.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12107
Loading
/content/journals/10.1111/bre.12107
Loading

Data & Media loading...

Supplements

Location of the study sections.

Location of the samples for strontium isotope analyses.

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error