1887
Volume 28, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Geothermal resources hosted within sedimentary basins with high natural permeability have been targeted for the production of energy in Australia. The Hutton Sandstone (Cooper‐Eromanga Basin) – a prolific oil and gas producer known to have good reservoir quality and high reservoir volume – was recently tested for its geothermal potential in the Cooper Region. However, recent exploratory drilling did not produce the anticipated flow rates, raising the question of the impact of diagenesis on the reservoir quality of this sedimentary formation. The combined characterization of the petrology, diagenesis and petrophysical properties of the Hutton Sandstone at Celsius‐1 and other surrounding wells indicates variable reservoir properties in the Cooper Region. This integrated study demonstrates that low formation permeability occurs at geothermal target depth and explains the negligible flow rates obtained at Celsius‐1. These low permeabilities are the results of the preservation of widespread detrital clayey matrix and the extensive occurrence of authigenic kaolinite, illite and silica cements at the top and base of the Hutton Sandstone. This aspect is confirmed by NMR transversal relaxation time becoming shorter at similar depths. Petrography analysis also reveals that sandstones are affected by diagenetic processes of the eogenetic and mesogenetic phases. However, the Hutton Sandstone at Celsius‐1 is presently at pressure‐temperature conditions that are below the mesogenetic conditions, which suggests a late episode of uplift and cooling from maximum palaeotemperatures.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12109
2015-04-01
2024-03-28
Loading full text...

Full text loading...

References

  1. Ajdukiewicz, J.M. & Lander, R.H. (2010) Sandstone reservoir quality prediction: the state of the art. Am. Assoc. Pet. Geol. Bull., 94(8), 1083–1091.
    [Google Scholar]
  2. Amireh, B.S., Schneider, W. & Abed, A.M. (1994) Diagenesis and burial history of the Cambrian‐Cretaceous sandstone series in Jordan. Neues Jahrbuch für Geologie und Paläontologie ‐ Abhandlungen, 192, 151–181.
    [Google Scholar]
  3. Anjos, S.M.C., De Ros, L.F. & Silva, C.M.A. (2003) Chlorite authigenesis and porosity preservation in the Upper Cretaceous marine sandstones of the Santos Basin, offshore eastern Brazil. International Association of Sedimentology. Special Publication, 34, 291–316.
  4. Antics, M., Bertrani, R. & Sanner, B., 2013. Summary of EGC 2013 Country Update Reports on Geothermal Energy in Europe. European Geothermal Conference Keynote.
  5. Augustine, C., 2013. Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems – Preliminary Results. In: Penrose Conference: Predicting and Detecting Natural and Induced Flow Paths for Geothermal Fluids in Deep Sedimentary Basins. Geological Society of America, Park City, Utah.
    [Google Scholar]
  6. Berger, A., Gier, S. & Krois, P. (2009) Porosity‐preserving cements in shallow‐marine volcaniclastic sandstones: evidence from Cretaceous sandstones of the Sawan gas field, Pakistan. Am. Assoc. Pet. Geol. Bull., 93(5), 595–615.
    [Google Scholar]
  7. Bjorlykke, K., Aagaard, P., Dypvik, H., Hastings, D.S. & Harper, A.S., 1986. Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, Offshore mid Norway. In: Habitat of Hydrocarbons on the Norwegian Continental Shelf, (Ed. by E.Holter , A.M.Spencer , C.J.Campbell , S.H.Hanslien , P.H.H.Nelson , E.Nysaether & E.G.Ormaasen ), pp. 275–286. Graham and Trotman, London.
    [Google Scholar]
  8. Boles, J.R. & Franks, S.G. (1979) Clay diagenesis in Wilcox Sandstones of Southwest Texas: implication of smectite diagenesis on sandstone cementation. J. Sediment. Petrol., 49, 55–70.
    [Google Scholar]
  9. Boult, P.J., Theologou, P.N. & Foden, J. (1997) Capillary seals within the Eromanga Basin, Australia; implications for exploration and production. Am. Assoc. Pet. Geol. Mem., 67, 143–167.
    [Google Scholar]
  10. Burns, K.L., Weber, C., Perry, J. & Harrington, H.J., 2000. Status of the geothermal industry in Australia. In: Proceedings of the World Geothermal Congress 2000, International Geothermal Association, Kyushu‐Tohoku, Japan, pp. 99–108.
    [Google Scholar]
  11. Burton, J.H., Krinsley, D.H. & Pye, K. (1987) Authigenesis of kaolinite and chlorite in Texas gulf coast sediments. Clays Clay Miner., 35(4), 291–296.
    [Google Scholar]
  12. Carrigy, M.A. & Mellon, G.B. (1964) Authigenic clay mineral cements in Cretaceous and Tertiary sandstones of Alberta. J. Sediment. Petrol., 34(3), 461–472.
    [Google Scholar]
  13. Chopra, P. & Holgate, F.L. (2005) A GIS analysis of temperature in the Australian crust. Proceedings of the World Geothermal Congress 2005, Antalya, Turkey.
  14. Coates, G.R., Miller, M. & Henderson, G., 1991. An investigation of a new magnetic resonance imaging log. Paper DD, in 32nd Annual Logging Symposium transactions: Society of Professional Well Log Analysts.
  15. Coates, G.R., Marschall, D., Mardon, D. & Galford, J., 1998. A new characterization of the bulk volume irreducible using magnetic resonance. The Log Analyst, 39, 1 (January‐February 1998), 51‐63.
  16. De Ros, L.F., Anjos, S.M.C. & Morad, S. (1994) Authigenesis of amphibole and its relationship to the diagenetic evolution of Lower Cretaceous sandstones of the Potiguar rift basin, northeastern Brazil. Sed. Geol., 88, 253–266.
    [Google Scholar]
  17. Dillinger, A. & Esteban, L. (2014) Experimental evaluation of reservoir quality in Mesozoic formations of the Perth Basin (Western Australia) by using a laboratory low field Nuclear Magnetic Resonance. Mar. Pet. Geol., 57, 455–469.
    [Google Scholar]
  18. Dixon, S.A., Summers, D.M. & Surdam, R.C. (1989) Diagenesis and preservation of porosity in Norphlet Formation (Upper Jurassic), Southern Alabama. Am. Assoc. Pet. Geol. Bull., 73, 707–728.
    [Google Scholar]
  19. Dunn, K.J., Bergmann, D.J. & Latorraca, G.A., 2002. Nuclear Magnetic Resonance; Petrophysical and Logging Applications. Handbook of Geophysical Exploration. Pargamon, Amsterdam, p. 293.
    [Google Scholar]
  20. Eberl, D.D., Srodon, J., Lee, M., Nadeau, P.H. & Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: correlation among structure, composition, origin, and particle thickness. Am. Mineral., 72, 914–934.
    [Google Scholar]
  21. Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstone of the Garn Formation, haltenbaken, mid‐Norwegian continental shelf. Clay Miner., 24, 233–253.
    [Google Scholar]
  22. Eslinger, E. & Sellars, B. (1981) Evidence for the formation of illite from smectite during burial metamorphism in the Belt Supergroup, Clark Fork, Idaho. J. Sediment. Petrol., 51(1), 203–216.
    [Google Scholar]
  23. Geotrack
    Geotrack , 1999. Thermal history reconstructions in the Cooper‐Eromanga Basin using zircon and apatite fission track analysis, and vitrinite reflectance with results from Beanbush‐1, Burley‐1, Burley‐2, Dullingari‐1, McLeod‐1, Tirrawarra‐1 and Toolachee wells (Report commissioned by PIRSA) Geotrack International Report 668, 103.
  24. Gottlieb, P., Wilkie, G., Sutherland, D., Ho‐Tu, E., Suthers, S., Perera, K., Jenkins, B., Spencer, S., Butcher, A. & Rayner, J. (2000) Using quantitative electron microscopy for process mineralogy applications. J. Miner. Met. Mater. Soc., 52, 24–25.
    [Google Scholar]
  25. Gravestock, D., Griffiths, M. & Hill, A. (1983) The Hutton Sandstone – two separate reservoirs in the Eromanga Basin, South Australia. APEA J., 23(1), 109–119.
    [Google Scholar]
  26. Gravestock, D.I., Hibburt, J.E. & Drexel, J.F. (Eds), 1998. The Petroleum Geology of South Australia. Vol. 4. Department of Primary Industries and Resources, Cooper Basin, SA.
    [Google Scholar]
  27. Hammer, E., Mork, M.B.E. & Naess, A. (2010) Facies control on the distribution of diagenesis and compaction in fluvial‐deltaic deposits. Mar. Pet. Geol., 27, 1737–1751.
    [Google Scholar]
  28. Heling, D. (1978) Diagenesis of illite in argillaceous sediments of the Rhingraben. Clay Miner., 13, 211–219.
    [Google Scholar]
  29. Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial and metamorphism of argillaceous sediment: 1. Mineralogial and chemical evidence. Geol. Soc. Am. Bull., 87(5), 725–737.
    [Google Scholar]
  30. Humphreys, B., Hogarth, R. & Lowe, C., 2013. Australia's first operating Enhanced Geothermal System (EGS) power plant. In: Sustainable Engineering Society (SENG) 2013 conference: Looking back… Looking forward, 221‐228.
  31. Jahren, J.S. & Aagaard, P. (1992) Diagenetic illite‐chlorite assemblages in arenites. I. Chemical evolution. Clays Clay Miner., 40(5), 540–546.
    [Google Scholar]
  32. Jorand, R., Fehr, A., Koch, A. & Clauser, C. (2011) Study of the variation of thermal conductivity with water saturation using nuclear magnetic resonance. J. Geophys. Res., 116, B08208.
    [Google Scholar]
  33. Kantorowicz, J. (1984) The nature, origin and distribution of authigenic clay minerals from Middle Jurassic Ravenscar and Brent Group sandstones. Clay Miner., 19, 359–375.
    [Google Scholar]
  34. Kantorowicz, J.D. (1985) The petrology and diagenesis of Middle Jurassic clastic sediments, Ravenscar Group, Yorshire. Sedimentology, 32, 833–853.
    [Google Scholar]
  35. Keller, W.D. (1978) Classification of kaolins exemplified by their texture in scan electron micrographs. Clays Clay Miner., 26, 1–20.
    [Google Scholar]
  36. Kleinberg, R.L., Kenyon, W.E. & Mitra, P.P. (1994) Mechanism of NMR relaxation of fluids in rocks. J. Magn. Reson., Ser. A, 108(2), 206–2014.
    [Google Scholar]
  37. Kuang, K.S. (1985) History and style of Cooper‐Eromanga Basin structure. Explor. Geophys. (Melbourne), 16(2–3), 245–248.
    [Google Scholar]
  38. Lund, J.W., Lienau, P.J. & Lunis, B.C. (Eds) (1998) Geothermal direct‐use engineering and design guidebook. Third edition. Geo‐Heat Centre, Oregon Institute of Technology, Klamath Falls, OR, 465 pp.
    [Google Scholar]
  39. Lund, J.W., Freeston, D.H. & Boyd, T.L. (2011) Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 40, 159–180.
    [Google Scholar]
  40. Luo, J.L., Morad, S., Salem, A., Ketzer, J.M., Lei, X.L., Guo, D.Y. & Hlal, O. (2009) Impact of diagenesis on reservoir‐quality evolution in fluvial and lacustrine‐deltaic sandstones: evidence from Jurassic and Triassic sandstones from the Ordos Basin, China. J. Petrol. Geol., 32(1), 79–102.
    [Google Scholar]
  41. McKinley, J.M., Worden, R.H. & Ruffell, A.H. (2003) Smectite in sandstones: a review of the controls on occurrence and behavious during diagenesis. International Association Sedimentologists Special Publication, 34, 109–128.
  42. Mills, T. & Humphreys, B., 2013. Habanero Pilot Project – Australias's first EGS power plant. Proceedings, 35th New Zeeland Geothermal Workshop, Rotorua.
  43. Moraes, M.A.S. & De Ros, L.F. (1990) Infiltrated clays in fluvial Jurassic sandstones of Reconcavo Basin, Northeastern Brazil. J. Sediment. Petrol., 60(6), 809–819.
    [Google Scholar]
  44. Morad, S. & Al‐Dahan, A.A. (1986) Diagenetic alteration of detrital biotite in Proterozoic sedimentary rocks from Sweden. Sed. Geol., 47, 95–107.
    [Google Scholar]
  45. Moraes, M.A.S. & De Ros, L.F.1992. Depositional, infiltrated and authigenic clays in fluvial sandstones of Jurassic Sergi Formation, Reconcavo Basin, northeastern Brazil. In: Origin, Diagenesis, and Petrophysics of Minerals in Sandstones (Ed. by D.W.Houseknecht & E.D.Pittman ), SEPM Special Publication 47, Tulsa, OK, 282pp.
    [Google Scholar]
  46. Morriss, C.E., MacInnis, R., Freedman, R. & Smaardyk, J., 1993. Field test of an experimental pulsed nuclear magnetism tool, paper GGG. In: 34th Annual Logging Symposium Transactions: Society of Professional Well Log Analysts.
  47. Neasham, J.W. (1977) Application of scanning electron microscopy to characterisation of hydrocarbon bearing rocks. Scan. Electron Microsc., 10, 101–108.
    [Google Scholar]
  48. Pujol, M., 2011. Examples of successful hot Sedimentary Aquifer direct‐use projects in Perth, Western Australia. In: Western Australian Geothermal Energy Symposium: abstracts. (Ed. by M.Middleton & K.Gessner ). pp. 34. N/A, Perth, WA.
    [Google Scholar]
  49. Rittenhouse, G. (1971) Mechanical compaction of sands containing different percentages of ductile grains: a theoretical approach. Am. Assoc. Pet. Geol. Bull., 55(1), 92–96.
    [Google Scholar]
  50. Robertson, H.E. & Lahann, R. (1981) Smectite to illite conversion rates: effects of solution chemistry. Clay Miner., 29, 129–135.
    [Google Scholar]
  51. Straley, C., Rossimi, D., Vinegar, H., Tutunjian, P. & Morriss, C., 1994. Core Analysis by Low Field NMR. Society of Core Analysts, paper 9406.
  52. Timur, A. (1969) Effective porosity and permeability of sandstones investigated through nuclear magnetic principles. Log Anal., 10(1), 3.
    [Google Scholar]
  53. Wanas, H.A. & Soliman, H.E. (2001) Allogenic and authigenic clays of the Lower Palaeozoic sandstones of the Naqus Formation at Gedel Gunna, central Sinai, Egypt: their recognition and geological significance. J. Afr. Earth Sc., 32(1), 47–60.
    [Google Scholar]
  54. Watts, K.J. (1987) The Hutton Sandstone – Birkhead Formation transition, ATp 269P(1), Eromanga Basin. APEA J., 27, 215–229.
    [Google Scholar]
  55. Weibel, R. (1999) Effects of burial on the clay assemblages in the Triassic Skageraak Formation, Denmark. Clay Miner., 34, 619–635.
    [Google Scholar]
  56. Wilson, M.D. & Pittmann, E.D. (1977) Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis. J. Sediment. Petrol., 47(1), 1–21.
    [Google Scholar]
  57. Wiltshire, M.J., 1982. Late Triassic and Early Jurassic sedimentation in the Great Artesian Basin. Petroleum Exploration Society of Australia and the Geological Society of Australia, 58‐67.
  58. Wolela, A.M. & Gierlowski‐Kordesch, E.H. (2007) Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin (Triassic‐Jurassic), Newark Supergroup, USA. Sed. Geol., 197, 99–126.
    [Google Scholar]
  59. Worden, R.H. & Burley, S.D., 2003. Sandstone diagenesis: the evolution of sand to stone. In: Sandstone Diagenesis: Recent and Ancient. (Ed. by S.D.Burley & R.H.Worden ), Vol. 4, pp. 207–250. Wiley‐Blackwell Publishing, International Association of Sedimentologists Reprint Series, Malden, Massachusetts, USA.
    [Google Scholar]
  60. Worden, R.H. & Morad, S., 2003. Clay minerals in sandstones: controls on formation, distribution and evolution. In: Clay Mineral Cements in Sandstones (Ed. by R.H.Worden & S.Morad ), IAS Special Publication, 34, Blackwell Publishing, Oxford, UK, 1–41.
    [Google Scholar]
  61. Wright, V.P. (1992) Paleosol recognition: a guide to early diagenesis in terrestrial settings. In: Diagenesis, Vol. III (Ed. by K.H.Wolf , G.V.Chilingarian ), pp. 591–619. Elsevier, Amsterdam.
    [Google Scholar]
  62. Zwingmann, H., Tingate, P.R., Lemon, N.M. & Hamilton, P.J.., 2001. K‐Ar dating, petrographic and thermal modelling constraints on illite origin in the Cooper Basin, South Australia. PESA Eastern Australasian Basins Symposium, Melbourne, 321–327.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12109
Loading
/content/journals/10.1111/bre.12109
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error