1887
Volume 28, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The North Sakhalin Basin in the western Sea of Okhotsk has been the main site of sedimentation from the Amur River since the Early Miocene. In this article, we present regional seismic reflection data and a Neogene–Recent sediment budget to constrain the evolution of the basin and its sedimentary fill, and consider the implications for sediment flux from the Amur River, in particular testing models of continental‐scale Neogene drainage capture. The Amur‐derived basin‐fill history can be divided into five distinct stages: the first Amur‐derived sediments (>21–16.5 Ma) were deposited during a period of transtension along the Sakhalin‐Hokkaido Shear Zone, with moderately high sediment flux to the basin (71 Mt year−1). The second stage sequence (16.5–10.4 Ma) was deposited following the cessation of transtension, and was characterised by a significant reduction in sediment flux (24 Mt year−1) and widespread retrogradation of deltaic sediments. The third (10.4–5.3 Ma) and fourth (5.3–2.5 Ma) stages were characterised by progradation of deltaic sediments and an associated increase in sediment flux (48–60 Mt year−1) to the basin. Significant uplift associated with regional transpression started during this time in southeastern Sakhalin, but the north‐eastward propagating strain did not reach the NE shelf of Sakhalin until the Pleistocene (<2.5 Ma). This uplift event, still ongoing today, resulted in recycling of older deltaic sediments from the island of Sakhalin, and contributed to a substantially increased total sediment flux to the adjacent basinal areas (165 Mt year−1). Adjusted rates to discount these local erosional products (117 Mt year−1) imply an Amur catchment‐wide increase in denudation rates during the Late Pliocene–Pleistocene; however, this was likely a result of global climatic and eustatic effects, combined with tectonic processes within the Amur catchment and possibly a smaller drainage capture event by the Sungari tributary, rather than continental‐scale drainage capture involving the entire upper Amur catchment.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12110
2015-03-09
2024-04-25
Loading full text...

Full text loading...

References

  1. Allen, P. (2005) Striking a chord. Nature, 434(7036), 961.
    [Google Scholar]
  2. Allen, P.A. & Allen, J.R. (2005) Basin Analysis. Blackwell Science, Oxford, UK.
    [Google Scholar]
  3. An, Z., Kutzbach, J.E., Prell, W.L. & Porter, S.C. (2001) Evolution of Asian monsoons and phased uplift of the Himalaya – Tibetan plateau since Late Miocene times. Nature, 411(6833), 62–66.
    [Google Scholar]
  4. Antipov, M.P., Kovylin, V.M. & Filat'yev, V.P. (1980) Sedimentary cover of the deepwater basins of Tatar Strait and northern part of the Sea of Japan. Int. Geol. Rev., 22, 1327–1334.
    [Google Scholar]
  5. Apel, E.V., Burgmann, R., Steblov, G., Vasilenko, N., King, R. & Prytkov, A. (2006) Independent active microplate tectonics of northeast Asia from GPS velocities and block modelling. Geophys. Res. Lett., 33(11).
    [Google Scholar]
  6. Brookfield, M.E. (1998) The evolution of the great river systems of southern Asia during the Cenozoic India‐Asia collision: rivers draining southwards. Geomorphology, 22(3–4), 285–312.
    [Google Scholar]
  7. Brookfield, M.E. (2008) Evolution of the great river systems of southern Asia during the Cenozoic India‐Asia collision: rivers draining north from the Pamir syntaxis. Geomorphology, 100(3–4), 296–311.
    [Google Scholar]
  8. Burbank, D.W., Derry, L.A. & France‐Lanord, C. (1993) Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364(6432), 48–50.
    [Google Scholar]
  9. Christie‐Blick, N. & Biddle, K.T. (1985) Deformation and basin formation along strike slip faults. In: Strike‐Slip Deformation, Basin Formation, and Sedimentation (Ed. by K.T.Biddle ), pp. 1–34. Society of Economic Paleontologists and Mineralogists, Tulsa, OK, USA.
    [Google Scholar]
  10. Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., Wang, E. & Chen, L. (2004) Surface uplift, tectonics and erosion of eastern Tibet from large‐scale drainage patterns. Tectonics, 23.
    [Google Scholar]
  11. Clift, P.D. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241(3–4), 571–580.
    [Google Scholar]
  12. Clift, P.D. & Blusztajn, J. (2005) Reorganization of the western Himalayan river system after five million years ago. Nature, 438(7070), 1001–1003.
    [Google Scholar]
  13. Clift, P.D. & Sun, Z. (2006) The sedimentary and tectonic evolution of the Yinggehai‐Song Hong basin and the southern Hainan margin, South China Sea: implications for Tibetan uplift and monsoon intensification. J. Geophys. Res. B Solid Earth, 111(6).
    [Google Scholar]
  14. Clift, P.D., Blusztajn, J. & Duc, N.A. (2006) Large‐scale drainage capture and surface uplift in eastern Tibet‐SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophys. Res. Lett., 33(19).
    [Google Scholar]
  15. Clift, P., Lee, G.H., Anh Duc, N., Barckhausen, U., Van Long, H. & Zhen, S. (2008a) Seismic reflection evidence for a Dangerous Grounds miniplate: no extrusion origin for the South China Sea. Tectonics, 27(3).
    [Google Scholar]
  16. Clift, P.D., Wan, S. & Blusztajn, J. (2014) Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth‐Sci. Rev., 130, 86–102.
    [Google Scholar]
  17. Davies, C.E., Poynter, S.P., Macdonald, D., Flecker, R., Voronova, L., Galverson, V., Kovtunovich, P., Fot'Yanova, L. & Blanc, E., (2005) Facies analysis of the Neogene delta of the Amur River, Sakhalin, Russian Far East: controls on sand distribution.. In: River Deltas – Models and Examples (Ed. by L.Giosan & J.P.Bhattacharya ), vol. 83, pp. 207–229. SEPM (Society for Sedimentary Geology) Special Publications, Tulsa.
    [Google Scholar]
  18. Derevskova, N.A. (2006) Geological excursion in North Sakhalin. Sakhalinmorneftegaz field guide.
  19. Dix, C.H. (1995) Seismic velocities from surface measurement. Geophysics, 20, 66–86.
    [Google Scholar]
  20. Flower, B.P. & Kennett, J.P. (1995) Middle Miocene deepwater paleoceanography in the southwest Pacific: relations with East Antarctic Ice Sheet development. Paleoceanography, 10(6), 1095–1112.
    [Google Scholar]
  21. Fournier, M., Jolivet, L., Huchon, P., Sergeyev, K.F. & Oscorbin, L.S. (1994) Neogene strike‐slip faulting in Sakhalin and the Japan Sea opening. J. Geophys. Res., 99(B2), 2701–2725.
    [Google Scholar]
  22. Gavrilov, A.I. & Tereshchenkov, A.A. (1982) Tectonic characteristics and oil‐gas productivity of the Lower‐Middle Miocene sediments of North Sakhalin. Neftegazovaya Geologiya i Geofizika, 3, 27–31.
    [Google Scholar]
  23. Gladenkov, Y.B., Bazhenova, O.K., Grechin, V.I., Margulis, L.S. & Salnikov, B.A. (2002). Cenozoic of Sakhalin and Its Oil‐and‐Gas Potential (Cainozoye Sakhalin e yego neftegazonosnost). Geological Institute of the Russian Academy of Sciences, Moscow.
    [Google Scholar]
  24. Godin, L., Grujic, D., Law, R.D. & Searle, M.P. (2006) Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. Geol. Soc. Spec. Pub., 268, 1–23.
    [Google Scholar]
  25. Goodbred, S.L.Jr. and Kuehl, S.A. (2000). Enormous Ganges‐Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology [Boulder], 28(12), 1083–1086.
    [Google Scholar]
  26. Hall, R. & Nichols, G. (2002) Cenozoic sedimentation and tectonics in Borneo: climatic influences on orogenesis. In: Sediment Flux to Basins: Causes, Controls and Consequences (Ed. by S.J.Jones & L.Frostick ) Geological Society Special Publication, 191, 5–22.
    [Google Scholar]
  27. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.
    [Google Scholar]
  28. Hindle, D., Fujita, K. & Mackey, K. (2006) Current deformation rates and extrusion of the northwestern Okhotsk plate, northeast Russia. Geophys. Res. Lett., 33(2).
    [Google Scholar]
  29. Hovius, N. (1998) Controls on sediment supply by large rivers. In: Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks (Ed. by K.W.Shanley & P.J.McCabe ) SEPM (Society for Sedimentary Geology) Special Publications, Tulsa, 59, 3–16.
    [Google Scholar]
  30. Ivashchenko, A.I., Kim, C.U., Oscorbin, L.S., Poplavskaya, L.N., Poplavsky, A.A., Burymskaya, R.N., Mikhailova, T.G., Vasilenko, N.F. & Streltsov, M.I. (1997) The Neftegorsk, Sakhalin Island, earthquake of 27 May 1995. Island Arc., 6(3), 288–302.
    [Google Scholar]
  31. Johannessen, E.P. & Steel, R.J. (2005) Shelf‐margin clinoforms and prediction of deepwater sands. Basin Res., 17(4), 521–550.
    [Google Scholar]
  32. Jolivet, L. (1987) America‐ Eurasia plate boundary in eastern Asia and the opening of marginal basins. Earth Planet. Sci. Lett., 81(2–3), 282–288.
    [Google Scholar]
  33. Jolivet, L., Davy, P. & Cobbold, P. (1990) Right‐lateral shear along the northwest Pacific Margin and the India‐ Eurasia collision. Tectonics, 9(6), 1409–1419.
    [Google Scholar]
  34. Jolivet, M., Ritz, J.‐F., Vassallo, R., Larroque, C., Braucher, R., Todbileg, M., Chauvet, A., Sue, C., Arnaud, N., De Vicente, R., Arzhanikova, A. & Arzhanikov, S. (2007) Mongolian summits: an uplifted, flat, old but still preserved erosion surface. Geology, 35(10), 871–874.
    [Google Scholar]
  35. Lallemand, S. & Jolivet, L. (1986) Japan Sea: a pull‐apart basin?Earth Planet. Sci. Lett., 76(3–4), 375–389.
    [Google Scholar]
  36. Liu, X. & Galloway, W.E. (1997) Quantitative determination of tertiary sediment supply to the North Sea Basin. Am. Assoc. Pet. Geol. Bull., 81(9), 1482–1509.
    [Google Scholar]
  37. Macdonald, D.I.M. & Flecker, R. (2007) Injected sand sills in a strike‐slip fault zone: a case study from the Pil'sk Suite (Miocene), SE Schmidt Peninsula, Sakhalin. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ). American Association of Petroleum Geologists, Memoirs, 87, 253–263.
    [Google Scholar]
  38. Makhinov, A.N. (2004) Natural and anthropogenic factors of the Amur River runoff formation. Far Eastern Branch Russian Acad. Sci. Bull., 2, 41–46.
    [Google Scholar]
  39. Métivier, F. (2002) On the use of sedimentation rates in deciphering global change. Geophys. Res. Lett., 29(15), 41–1.
    [Google Scholar]
  40. Métivier, F. & Gaudemer, Y. (1999) Stability of output fluxes of large rivers in South and East Asia during the last 2 million years: implications on floodplain processes. Basin Res., 11(4), 293–303.
    [Google Scholar]
  41. Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 137(2), 280–318.
    [Google Scholar]
  42. Milliman, J.D. & Meade, R.H. (1983) World‐wide delivery of sediment to the oceans. J. Geol., 91(1), 1–21.
    [Google Scholar]
  43. Nicholson, U. (2009). Landscape evolution and sediment routing across a strike‐slip plate boundary, PhD thesis. University of Aberdeen.
  44. Nicholson, U., Vanlaningham, S. & Macdonald, D.I.M. (2013) Quaternary landscape evolution over a strike‐slip plate boundary: drainage network response to incipient orogenesis in Sakhalin, Russian far east. Geosphere, 9(3), 588–601.
    [Google Scholar]
  45. Nicholson, U., Poynter, S., Clift, P.D. & Macdonald, D.I.M. (2014) Tying catchment to basin in a giant sediment routing system: a source‐to‐sink study of the Neogene‐recent Amur River and its delta in the North Sakhalin Basin. In: Sediment Provenance Studies in Hydrocarbon Exploration and Production (Ed. by R.A.Scott , H.R.Smyth , A.C.Morton & N.Richardson ) Geological Society of London Special Publication 386, 163–193.
    [Google Scholar]
  46. Nikolayev, I.E. (1981) Method of exploration for stratigraphic oil and gas traps in the Katangliysko‐Lun Region of North Sakhalin. Neftegazovaya Geologiya i Geofizika, 7, 18–21.
    [Google Scholar]
  47. Okamura, S., Arculus, R.J. & Martynov, Y.A. (2005) Cenozoic magmatism of the north‐eastern Eurasian margin: the role of lithosphere versus asthenosphere. J. Petrol., 46(2), 21–253.
    [Google Scholar]
  48. Peters, J.J. (1978) Discharge and sand transport in the braided zone of the Zaire Estuary. Neth. J. Sea Res., 12(3–4), 273–292.
    [Google Scholar]
  49. Piskunov, B.N. & Khvedchuk, I.I. (1976) New data on the composition and age of the deposits on Moneron Island (northern part of the Sea of Japan). Doklady Akademii Nauk SSSR, 226, 647–650.
    [Google Scholar]
  50. Poynter, S. (2003) The Neogene evolution of the Amur River and its delta in the Russian Far‐ East, PhD thesis. Darwin College, University of Cambridge, Cambridge.
  51. Prell, W.L. & Kutzbach, J.E. (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360(6405), 647–652.
    [Google Scholar]
  52. Retallack, G.J. (2001) Cenozoic expansion of grasslands and climatic cooling. J. Geol., 109(4), 407–426.
    [Google Scholar]
  53. Riegel, S.A., Fujita, K., Koz'min, B.M., Imaev, V.S. & Cook, D.B. (1993) Extrusion tectonics of the Okhotsk Plate, Northeast Asia. Geophys. Res. Lett., 20(7), 607–610.
    [Google Scholar]
  54. Robinson, R.A.J., Brezina, C.A., Parrish, R.R., Horstwood, M.S.A., Oo, N.W., BIRD, M.I., Thein, M., Walters, A.S., Oliver, G.J.H. & Zaw, K. (2013) Large rivers and orogens: the evolution of the Yarlung Tsangpo–Irrawaddy system and the eastern Himalayan syntaxis. Gondwana Res., doi:10.1016/j.gr.2013.07.002.
    [Google Scholar]
  55. Rozhdestvenskiy, V.S. (1982) The role of wrench faults in the structure of Sakhalin. Geotectonics, 16, 323–332.
    [Google Scholar]
  56. Schellart, W.P., Jessell, M.W. & Lister, G.S. (2003) Asymmetric deformation in the backarc region of the Kuril arc, northwest Pacific: new insights from analogue modeling. Tectonics, 22(5), 1047.
    [Google Scholar]
  57. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching; an explanation of the post‐ Mid‐Cretaceous subsidence of the central North Sea basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  58. Seki, O., Ikehara, M., Kawamura, K., Nakatsuka, T., Ohnishi, K., Wakatsuchi, M., Narita, H. & Sakamoto, T. (2004). Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanography, 19(1), PA1016 1–18.
    [Google Scholar]
  59. Sorokin, A.P. (2001) Formation of the river network in the upper Amur region. In: Traditional Culture of Asian East (Ed. by A.P.Derevyanko , D.P.Bolotin , B.S.Zabiyako , B.S.Sapunov & S.V.Filonov ), pp.10–19. Amur State University Publishers, Blagovoshchenk.
    [Google Scholar]
  60. Sorokin, A.P. & Artyomenko, T.V. (2003) Structural evolution of the Eastern Margin of Eurasia in Late Mesozoic and Cenozoic. J. Geosci. Res. Northeast Asia, 6, 150–160.
    [Google Scholar]
  61. Syvitski, J.P., Vörösmarty, C.J., Kettner, A.J. & Green, P. (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376–380.
    [Google Scholar]
  62. Tapponnier, P., Peltzer, G. & Armijo, R. (1986) On the mechanics of the collision between India and Asia. Geol. Soc. London Spec. Publ., 19, 113–157.
    [Google Scholar]
  63. Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Yand, J. (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671–1677.
    [Google Scholar]
  64. Vassallo, R., Jolivet, M., Ritz, J., Braucher, R., Larroque, C., Sue, C., Todbileg, M. & Javkhlanbold, D. (2007) Uplift age and rates of the Gurvan Bogd system (Gobi‐Altay) by apatite fission track analysis. Earth Planet. Sci. Lett., 259(3–4), 333–346.
    [Google Scholar]
  65. Vereshchagin, V.H., Kovtunovich, U.M. & Mikhailov, K.M. (1969) Geologecheskaya karta Sakhalina. Ministry of Geology of the USSR.
  66. Weaver, R., Roberts, A.P., Flecker, R., Macdonald, D.I.M. & Fot'yanova, L.M. (2003) Geodynamic implications of paleomagnetic data from Tertiary sediments in Sakhalin, Russia (NW Pacific). J. Geophys. Res. B Solid Earth, 108(2).
    [Google Scholar]
  67. Wobus, C.W., Hodges, K.V. & Whipple, K.X. (2003) Has focused denudation sustained active thrusting at the Himalayan topographic front?Geology, 31(10), 861–864.
    [Google Scholar]
  68. Wong, H.K., Lüdmann, T., Baranov, B.V., Karp, B.Y., Konerding, P. & Ion, G. (2003) Bottom current‐controlled sedimentation and mass wasting in the northwestern Sea of Okhotsk. Mar. Geol., 201(4), 287–305.
    [Google Scholar]
  69. Worrall, D.M., Kunst, F., Kruglyak, V. & Kuznetsov, V. (1996) Tertiary tectonics of the Sea of Okhotsk, Russia: far‐field effects of the India‐Eurasia collision. Tectonics, 15(4), 813–826.
    [Google Scholar]
  70. Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.
    [Google Scholar]
  71. Zhang, P., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2‐4 Myr ago due to the influence of climate change on erosion rates. Nature, 410(6831), 891–897.
    [Google Scholar]
  72. Zhang, Y.G., Ji, J., Balsam, W., Liu, L. & Chen, J. (2009) Mid‐Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation. Geology, 37, 599–602.
    [Google Scholar]
  73. Zharov, A.E., Mitrofanova, L.I. & Tuzov, V.P. (2013) Cenozoic stratigraphy of the northern Sakhalin shelf. Stratigr. Geol. Correl., 21(5), 531–552.
    [Google Scholar]
  74. Zheng, H., Clift, P.D., Tada, R., Jia, J.T., He, M.Y. & Wang, P. (2013) A Pre‐Miocene birth to the Yangtze River. Proc. Natl Acad. Sci., 1–6, doi:10.1073/pnas.1216241110.
    [Google Scholar]
  75. Zonenshain, L.P., Kuzmin, M.I. & Natapov, L.M. (1990) Geology of the USSR: a plate tectonic synthesis. AGU Geodynamic Ser., 21, 240.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12110
Loading
/content/journals/10.1111/bre.12110
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error