1887

Abstract

Summary

High porosity chalks have been extensively studied over the past decades. Only recently, there has been an increasing interest in the understanding of low permeability chalks, forming potential unconventional reservoirs or intra-reservoir seals. In order to better understand the properties of those tight chalks, an integrated petrographical, petrophysical and geomechanical study was carried out on a set of 35 carefully selected outcrop samples, covering a wide range of lithotypes. The dataset gathered covers a broad spectrum of values with regards to determined petrophysical (e.g.porosities from 15 to 45%, pore throat diameters from 25nm to 1080nm) and geomechanical properties (e.g.: strengths from 3 to 50 MPa). The samples have also been characterized in terms of microtextures by integrating both geological and sedimentpetrological data. Tight chalks encompass different lithotypes, but the main factors controlling the microtexture are: (1) the non-carbonate content, either related to sedimentological settings (e.g. argillaceous chalks) or burial diagenesis (e.g. marl-seam chalks); (2) the degree of cementation, either eogenetic (e.g. hardgrounds) or mesogenetic. Those parameters strongly modify chalk microtexture and thus its porous network, reducing pore-throat and pore body sizes hence altering poroperm properties. Beyond petrophysical properties, cementation appears to be the main parameter controlling the strength of chalks.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201601059
2016-05-30
2024-04-26
Loading full text...

Full text loading...

References

  1. Bailey, H., Gallagher, L., Hampton, M., Krabbe, M., Jones, B., Jutson, D., Moe, A., Nielsen, E.B., Petersen, N.W., Riis, F., Sawyer, D., Sellwood, B.W., Strand, T., Overli, P., Oxnevad, I.
    [1999] Joint Chalk Research Phase V: A Joint Chalk Stratigraphic Framework. Norwegian Petroleum Directorate (NPD), Stavanger.
    [Google Scholar]
  2. Bell, F.G., Culshaw, M.G., Cripps, J.C.
    [1999] A review of selected engineering geological characteristics of English Chalk. Eng. Geol.54, 237–269. doi:10.1016/S0013‑7952(99)00043‑5
    https://doi.org/10.1016/S0013-7952(99)00043-5 [Google Scholar]
  3. Brigaud, B., Vincent, B., Durlet, C., Deconinck, J.F., Jobard, E., Pickard, N., Yven, B., Landrein, P.
    [2014] Characterization and origin of permeability-porosity heterogeneity in shallow-marine carbonates: From core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France).Mar. Pet. Geol.57, 631–651. doi:10.1016/j.marpetgeo.2014.07.004
    https://doi.org/10.1016/j.marpetgeo.2014.07.004 [Google Scholar]
  4. Chang, C., Zoback, M.D., Khaksar, A.
    [2006] Empirical relations between rock sttrength and physical properties in sedimentary rocks. J. Pet. Sci. Eng.51, 223–237.
    [Google Scholar]
  5. Coates, G.R., Hardwick, R.C.A., Roberts, D.
    [1999] The magnetic imaging log characterised by comparaison with petrophysical properties and laboratory core data: Paper 22723, in: Proceedings of the Society of Petroleum Engineers 66th Annual Technical Conference and Exhibition. p. 4.
    [Google Scholar]
  6. Deville de Periere, M., Durlet, C., Vennin, E., Lambert, L., Bourillot, R., Caline, B., Poli, E.
    [2011]. Morphometry of micrite particles in Cretaceous microporous limestones of the middle east: Influence on reservoir properties. Mar. Pet. Geol.28, 1727–1750. doi:10.1016/j.marpetgeo.2011.05.002
    https://doi.org/10.1016/j.marpetgeo.2011.05.002 [Google Scholar]
  7. Faÿ-Gomord, O., Soete, J., Katika, K., Galaup, S., Caline, B., Descamps, F., Lasseur, E., Fabricius, I.L., Saiag, J., Swennen, R., Vandycke, S.
    [submitted] New insight into the microtexture of chalks from NMR analysis. Mar. Pet. Geol.
    [Google Scholar]
  8. Gennaro, M., Wonham, J.P., Sælen, G., Walgenwitz, F., Caline, B., Faÿ-Gomord, O.
    [2013] Characterization of dense zones within the Danian chalks of the Ekofisk Field, Norwegian North Sea. Pet. Geosci.19, 39–64.
    [Google Scholar]
  9. Kenyon, W.E.
    [1997] Petrophysical Principles of Applications of NMR Logging. Soc. Petrophysicists Well-Log Anal.38.
    [Google Scholar]
  10. Mallon, a. J., Swarbrick, R.E.
    [2008]. Diagenetic characteristics of low permeability, non-reservoir chalks from the Central North Sea. Mar. Pet. Geol.25, 1097–1108. doi:10.1016/j.marpetgeo.2007.12.001
    https://doi.org/10.1016/ j.marpetgeo.2007.12.001 [Google Scholar]
  11. Megawati, M., Madland, M.V., Hiorth, A.
    [2012] Probing pore characteristics of deformed chalk by NMR relaxation. J. Pet. Sci. Eng.100, 123–130. doi:10.1016/j.petrol.2012.11.001
    https://doi.org/10.1016/j.petrol.2012.11.001 [Google Scholar]
  12. Palchik, V., Hatzor, Y.H.
    [2004] The Influence of Porosity on Tensile and Compressive Strength of Porous Chalks. Rock Mech. Rock Eng.37, 331–341. doi:10.1007/s00603‑003‑0020‑1
    https://doi.org/10.1007/s00603-003-0020-1 [Google Scholar]
  13. Regnet, J.B., Robion, P., David, C., Fortin, J., Brigaud, B., Yven, B.
    [2014] Accoustic and reservoir properties of microporous caronate rocks: implication of micrite particle size and morphology. J.Geophys. Res. Solid Earth, 120, 1–22. doi:10.1002/2014JB011313.Received
    https://doi.org/10.1002/2014JB011313.Received [Google Scholar]
  14. Vincent, B., Fleury, M., Santerre, Y., Brigaud, B.
    [2011] NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach. J. Appl. Geophys.74, 38–58. doi:10.1016/j.jappgeo.2011.03.002
    https://doi.org/10.1016/j.jappgeo.2011.03.002 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201601059
Loading
/content/papers/10.3997/2214-4609.201601059
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error