1887
Volume 64, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high‐chargeability low‐resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high‐resolution image of the top ∼450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep‐resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ∼1‐km depth.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12363
2016-03-23
2024-04-25
Loading full text...

Full text loading...

References

  1. AllenR.L., WeihedP. and SvensonS.‐Å.1996. Setting of Zn–Cu–Au–Ag massive 1256 sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic 1257 arc, Skellefte District, Sweden. Economic Geology91, 1022–1053.
    [Google Scholar]
  2. BasokurA.T., RasmussenT.M., KayaC., AltunY. and AktasK.1997. Comparison of induced polarization and controlled‐source audio‐magnetotellurics methods for massive chalcopyrite exploration in a volcanic area. Geophysics62(4), 1087–1096.
    [Google Scholar]
  3. BauerT.2010. Structural and sedimentological reconstruction of the inverted Vargfors Basin: A base for 4D‐modeling. Licentiate thesis, Luleå University of Technology, Sweden, 44 pp.
    [Google Scholar]
  4. BauerT.E., SkyttäP., AllenR.L. and WeihedP.2011. Syn‐extensional faulting controlling structural inversion—Insights from the Palaeoproterozoic Vargfors syncline, Skellefte mining district, Sweden. Precambrian Research191, 166–183.
    [Google Scholar]
  5. BauerT.E., SkyttäP., AllenR.L. and WeihedP.2013. Fault‐controlled sedimentation in a progressively opening extensional basin: The Palaeoproterozoic Vargfors basin, Skellefte mining district, Sweden. International Journal of Earth Sciences102(2), 385–400.
    [Google Scholar]
  6. BillströmK. and WeihedP.1996. Age and provenance of host rocks and ores of the Palaeoproterozoic Skellefte District, northern Sweden. Economic Geology91, 1054–1072.
    [Google Scholar]
  7. CaglarI.2000. A method to remove electromagnetic coupling from induced polarization data for an “exponential” Earth model. Pure and Applied Geophysics157(10), 1729–1748.
    [Google Scholar]
  8. ClaessonL.‐Å. and IsakssonH.1981a. Västra Maurliden prospekteringsrapport: BRAP 8106. Sveriges Geologiska Undersökning, unpublished report (in Swedish).
    [Google Scholar]
  9. ClaessonL.‐Å. and IsakssonH.1981b. Nordöstra Maurliden prospekteringsrapport BRAP 81052. Sveriges Geologiska Undersökning, unpublished report (in Swedish).
    [Google Scholar]
  10. CommerM., NewmanG.A., WilliamsK.H. and HubbardS.S.2011. 3D induced‐polarization data inversion for complex resistivity. Geophysics76(3), F157–F171.
    [Google Scholar]
  11. DehghannejadM., BauerT.E., MalehmirA., JuhlinC. and WeihedP.2012. Crustal geometry of the central Skellefte district, northern Sweden – constraints from reflection seismic investigations. Tectonophysics20, 87–99.
    [Google Scholar]
  12. deGroot‐HedlinC. and ConstableS.1990. Occam's inversion to generate smooth, two‐dimensional models form magnetotelluric data. Geophysics55, 1613–1624.
    [Google Scholar]
  13. de KempE.A., MoneckeT., SheshpariM., GirardE., LauzièreK., GrunskyE.C.et al. 2011. 3D GIS as a support for mineral discovery. Geochemistry: Exploration, Environment, Analysis11(2), 117–128.
    [Google Scholar]
  14. García JuanateyM.2012. Seismics, 2D and 3D Inversion of Magnetotellurics: Jigsaw pieces in understanding the Skellefte Ore District. ISBN: 978‐91‐554‐8409‐5.
    [Google Scholar]
  15. García JuanateyM., HübertJ., TryggvasonA. and PedersenL.B.2013. Imaging the Kristineberg mining area with two perpendicular magnetotelluric profiles in the Skellefte Ore District, northern Sweden. Geophysical Prospecting4(2), 387–404.
    [Google Scholar]
  16. González‐RoldánM.J.2010. Mineralogy, Petrology and Geochemistry of syn‐volcanic intrusions in the Skellefte mining district, Northern Sweden. Unpublished Ph.D. thesis, University of Huelva, Spain, 273 pp.
    [Google Scholar]
  17. HübertJ., MalehmirA., SmirnowM., TryggvasonA. and PedersenL.B.2009. MT measurements in the western part of the Paleoproterozoic Skellefte Ore District, Northern Sweden: A contribution to an integrated geophysical study, Tectonophysics475, 493–502.
    [Google Scholar]
  18. IPR‐12 manual
    IPR‐12 manual . 1997. Available online at: [http://scintrexltd.com/downloads/IPR‐12%20Manual%20Rev%203.pdf].
  19. KatholB. and WeihedP.2005. Description of regional geological and geophysical maps of the Skellefte District and surrounding areas. Sveriges Geologiska Undersökning Ba57, 197 pp.
    [Google Scholar]
  20. KatholB., WeihedP., Antal LundinI., BarkG., Bergman WeihedJ., BergströmU.et al. 2005. Regional geological and geophysical maps of the Skellefte district and surrounding areas. Bedrock map. Sveriges Geologiska Undersökning57(1).
    [Google Scholar]
  21. KemnaA., BinleyA., RamirezA. and DailyW.2000. Complex resistivity tomography for environmental applications. Chemical Engineering77, 11–18.
    [Google Scholar]
  22. KneiselC.2006. Assessment of subsurface lithology in mountain environments using 2D resistivity imaging. Geomorphology80(1–2), 32–44.
    [Google Scholar]
  23. LiY. and OldenburgD.W.1994. Subspace linear inverse method. Inverse Problems10, 915–935.
    [Google Scholar]
  24. LiY. and OldenburgD.W.2000. 3D inversion of induced polarization data. Geophysics65(6), 1931–1945.
    [Google Scholar]
  25. LokeM.H.2012. Tutorial: 2‐D and 3D Electrical Imaging Surveys . GeoTomo Software, Malaysia.
    [Google Scholar]
  26. MaddenT.1985. Sulfide mineral electrode polarization properties: possible clues to ore mineral identification. Electrochemical Society Extended Abstracts85‐1, 478.
    [Google Scholar]
  27. MagnussonM.K., FernlundJ.M.R. and DahlinT.2010. Geoelectrical imaging in the interpretation of geological conditions affecting quarry operations. Bulletin of Engineering Geology and the Environment69(3), 465–486.
    [Google Scholar]
  28. MalehmirA., ThunehedH. and TryggvasonA.2009. The Paleoproterozoic Kristineberg mining area, northern Sweden: Results from integrated 3D geophysical and geologic modeling, and implications for targeting ore deposits. Geophysics74(1), B9–B22.
    [Google Scholar]
  29. MalehmirA., TryggvasonA., LickorishH. and WeihedP.2007. Regional structural profiles in the western part of the Palaeoproterozoic Skellefte ore district, northern Sweden. Precambrian Research159, 1–18.
    [Google Scholar]
  30. MalmqvistL.1978. Some applications of IP‐techniques for different geophysical prospecting purposes. Geophysical Prospecting26(1), 97–121.
    [Google Scholar]
  31. MonteliusC.2005. The genetic relationship between rhyolitic volcanism and Zn‐Cu‐Au deposits in the Maurliden Volcanic Centre, Skellefte District, Sweden: volcanic facies, lithogeochemistry and geochronology. PhD thesis, Luleå University of Technology, Sweden, 15 pp.
    [Google Scholar]
  32. MonteliusC., AllenR.L., SvensonS.‐Å. and WeihedP.2007. Facies architecture of the Palaeoproterozoic VMS‐bearing Maurliden volcanic centre, Skellefte district, Sweden. GFF129, 177–196.
    [Google Scholar]
  33. NelsonP.H. and Van VoorhisG.D.1983. Estimation of sulfide content from induced polarization data. Geophysics48(1), 62–75.
    [Google Scholar]
  34. OldenburgD.W. and LiY.1994. Inversion of induced polarization data. Geophysics59, 1327–1341.
    [Google Scholar]
  35. OldenburgD.W., LiY., FarquharsonC.G., KowalczykP., AravanisT., KingA.et al. 1998. Applications of geophysical inversions in mineral exploration problems. The Leading Edge17, 461–465.
    [Google Scholar]
  36. PadgetP., EkJ. and ErikssonL.1969. Vargisträsk, a case‐history in ore‐prospecting. Geoexploration7(3), 163–175.
    [Google Scholar]
  37. ParasnisD.S.1997. Principles of Applied Geophysics. London: Chapman and Hall.
    [Google Scholar]
  38. PhillipsN., OldenburgD., ChenJ., LiY. and RouthP.2001. Cost effectiveness of geophysical inversions in mineral exploration: Applications at San Nicolas. The Leading Edge20(12), 1351.
    [Google Scholar]
  39. RutleyA., OldenburgD.W. and ShekhtmanR.2001. 2D and 3D IP/resistivity inversion for the interpretation of Isa‐style targets. 15th Geophysical Conference and Exhibition, Australian Society of Exploration Geophysicists. Conference handbook: Geophysical odyssey: Preview (Brisbane, Qld.), 93, 85.
  40. SalmirinneH. and TurunenP.2007. Ground geophysical characteristics of gold targets in the Central Lapland Greenstone Belt. Geological Survey of Finland, Special Paper44, 209–223.
    [Google Scholar]
  41. SandrinA. and ElmingS‐Å.2007. Physical properties of rocks from borehole TJ71305 and geophysical outline of the Tjårrojåkka Cu‐prospect, northern Sweden. Ore Geology Reviews30(1), 56–73.
    [Google Scholar]
  42. SasakiY.1992. Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting40, 453–464.
    [Google Scholar]
  43. SkyttäP., HermanssonT., AnderssonJ., WhitehouseM. and WeihedP.2011. New zircon data supporting models of short‐lived igneous activity at 1.89 Ga in the western Skellefte District, central Fennoscandian Shield. Solid Earth2, 205–217.
    [Google Scholar]
  44. SkyttäP., BauerT., TavakoliS., HermanssonT., AnderssonJ. and WeihedP.2012. Pre‐1.87 Ga development of crustal domains overprinted by 1.87 Ga transpression in the Palaeoproterozoic Skellefte district, Sweden. Precambrian Research206–207, 109–136.
    [Google Scholar]
  45. StorzH., StorzW. and JacobsF.2000. Electrical resistivity tomography to investigate geological structures of the earth's upper crust. Geophysical Prospecting48(3), 455–471.
    [Google Scholar]
  46. SultanS.A., MansourS.A., SantosF.M. and HelalyA.S.2009. Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area, South Eastern Desert, Egypt. Journal of Geophysics and Engineering6(4), 345–356.
    [Google Scholar]
  47. TavakoliS., BauerT.E., ElmingS‐Å., ThunehedH. and WeihedP.2012a. Regional‐scale geometry of the central Skellefte district, northern Sweden—Results from 2.5D potential field modelling along three previously acquired seismic profiles. Applied Geophysics85, 43–58.
    [Google Scholar]
  48. TavakoliS., ElmingS‐Å. and ThunehedH.2012b. Geophysical modelling of the central Skellefte district, Northern Sweden; an integrated model based on the electrical, potential field and petrophysical data. Applied Geophysics82, 84–100.
    [Google Scholar]
  49. UBC‐GIF tutorials
    UBC‐GIF tutorials . 2007. Inversion theory: Practicalities: 2D DC resistivity as the example. Available online at: [http://www.eos.ubc.ca/ubcgif/iag/tutorials/invn‐theoryintro/practiceDC.htm].
  50. WeihedP.2010. Palaeoproterozoic mineralized volcanic arc systems and tectonic evolution of the Fennoscandian shield: Skellefte district Sweden. GFF132(1), 83–91.
    [Google Scholar]
  51. WilsonM.R., ClaessonL.‐Å., SehlstedtS., SmellieJ.A.T., AftalionM., HamiltonP.J.et al. 1987. Jörn: an early Proterozoic intrusive complex in a volcanic‐arc environment, north Sweden. Precambrian Research36, 201–225.
    [Google Scholar]
  52. WongJ. and StrangwayD.W.1981. Induced polarization in disseminated sulfide ores containing elongated mineralization. Geophysics46(9), 1258–1268.
    [Google Scholar]
  53. ZongeK., WynnJ. and UrquhartS.2005. Resistivity, induced polarization, and complex resistivity. In: Near Surface Geophysics (ed D.K.Butler ), pp. 265–300. Tulsa, OK: Society of Exploration Geophysicists.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12363
Loading
/content/journals/10.1111/1365-2478.12363
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error