1887
Volume 28, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

Fluid migration pathways in the subsurface are heavily influenced by pre‐existing faults. Although studies of active fluid‐escape structures can provide insights into the relationships between faults and fluid flow, they cannot fully constrain the geometry of and controls on the contemporaneous subsurface fluid flow pathways. We use 3D seismic reflection data from offshore NW Australia to map 121 ancient hydrothermal vents, likely related to magmatic activity, and a normal fault array considered to form fluid pathways. The buried vents consist of craters up to 264 m deep, which host a mound of disaggregated sedimentary material up to 518 m thick. There is a correlation between vent alignment and underlying fault traces. Seismic‐stratigraphic observations and fault kinematic analyses reveal that the vents were emplaced on an intra‐Tithonian seabed in response to the explosive release of fluids hosted within the fault array. We speculate that during the Late Jurassic the convex‐upwards morphology of the upper tip‐lines of individual faults acted to channelize ascending fluids and control where fluid expulsion and vent formation occurred. This contribution highlights the usefulness of 3D seismic reflection data to constraining normal fault‐controlled subsurface fluid flow.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12111
2015-01-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/28/3/bre12111.html?itemId=/content/journals/10.1111/bre.12111&mimeType=html&fmt=ahah

References

  1. Abebe, B., Acocella, V., Korme, T. & Ayalew, D. (2007) Quaternary faulting and volcanism in the Main Ethiopian Rift. J. Afr. Earth Sc., 48, 115–124.
    [Google Scholar]
  2. Allan, U.S. (1989) Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bull., 73, 803–811.
    [Google Scholar]
  3. Andresen, K.J. (2012) Fluid flow features in hydrocarbon plumbing systems: what do they tell us about the basin evolution?Mar. Geol., 332–334, 89–108.
    [Google Scholar]
  4. Andresen, K.J., Clausen, O.R. & Huuse, M. (2009) A Giant (5.3× 107 M3) middle Miocene (C. 15ma) sediment mound (M1) above the Siri Canyon, Norwegian‐Danish basin: origin and significance. Mar. Pet. Geol., 26, 1640–1655.
    [Google Scholar]
  5. Archer, S.G., Bergman, S.C., Iliffe, J., Murphy, C.M. & Thornton, M. (2005) Palaeogene igneous rocks reveal new insights into the geodynamic evolution and petroleum potential of the Rockall Trough, NE Atlantic Margin. Basin Res., 17, 171–201.
    [Google Scholar]
  6. Barnett, J.A., Mortimer, J., Rippon, J.H., Walsh, J.J. & Watterson, J. (1987) Displacement geometry in the volume containing a single normal fault. AAPG Bull., 71, 925–937.
    [Google Scholar]
  7. Baudon, C. & Cartwright, J. (2008) The kinematics of reactivation of normal faults using high resolution throw mapping. J. Struct. Geol., 30, 1072–1084.
    [Google Scholar]
  8. Bedard, J.H., Naslund, H.R., Nabelek, P., Winpenny, A., Hryciuk, M., Macdonald, W., Hayes, B., Steigerwaldt, K., Hadlari, T., Rainbird, R., Dewing, K. & Girard, E. (2012) Fault‐mediated melt ascent in a Neoproterozoic continental flood basalt province, the Franklin Sills, Victoria Island, Canada. Geol. Soc. Am. Bull., 124, 723–736.
    [Google Scholar]
  9. Bonini, M. & Mazzarini, F. (2010) Mud volcanoes as potential indicators of regional stress and pressurized layer depth. Tectonophysics, 494, 32–47.
    [Google Scholar]
  10. Brown, A.R. (2004) Interpretation of Three‐Dimensional Seismic Data. 6th edn. AAPG and SEG, Oklahoma, USA.
    [Google Scholar]
  11. Cartwright, J., Huuse, M. & Aplin, A. (2007) Seal bypass systems. AAPG Bull., 91, 1141–1166.
    [Google Scholar]
  12. Castelltort, S., Pochat, S. & Van Den Driessche, J. (2004) Using T‐Z plots as a graphical method to infer Lithological variations from growth strata. J. Struct. Geol., 26, 1425–1432.
    [Google Scholar]
  13. Cole, D., Stewart, S.A. & Cartwright, J.A. (2000) Giant irregular pockmark craters in the Palaeogene of the outer moray Firth Basin, UK North Sea. Mar. Pet. Geol., 17, 563–577.
    [Google Scholar]
  14. Driscoll, N.W. & Karner, G.D. (1998) Lower crustal extension across the Northern Carnarvon basin, Australia: evidence for an eastward dipping detachment. J. Geophys. Res.: Solid Earth (1978–2012), 103, 4975–4991.
    [Google Scholar]
  15. Egger, A.E., Glen, J.M.G. & McPhee, D.K. (2014) Structural controls on geothermal circulation in Surprise Valley, California: a re‐evaluation of the Lake City Fault Zone. Geol. Soc. Am. Bull., 126, 523–531.
    [Google Scholar]
  16. Gaffney, E.S., Damjanac, B. & Valentine, G.A. (2007) Localization of volcanic activity: 2. Effects of pre‐existing structure. Earth Planet. Sci. Lett., 263, 323–338.
    [Google Scholar]
  17. Giordano, G., Pinton, A., Cianfarra, P., Baez, W., Chiodi, A., Viramonte, J., Norini, G. & Groppelli, G. (2013) Structural control on geothermal circulation in the Cerro Tuzgle‐Tocomar geothermal volcanic area (Puna Plateau, Argentina). J. Volcanol. Geoth. Res., 249, 77–94.
    [Google Scholar]
  18. Groves, D.I. & Bierlein, F.P. (2007) Geodynamic settings of mineral deposit systems. J. Geol. Soc., 164, 19–30.
    [Google Scholar]
  19. Hamilton, E.L. (1985) Sound velocity as a function of depth in marine sediments. J. Acoust. Soc. Am., 78, 1348–1355.
    [Google Scholar]
  20. Hamilton, E.L., Bachman, R.T., Curray, J.R. & Moore, D.G. (1977) Sediment velocities from sonobuoys: Bengal Fan, Sunda Trench, Andaman Basin, and Nicobar Fan. J. Geophys. Res., 82, 3003–3012.
    [Google Scholar]
  21. Hansen, D.M. (2006) The morphology of intrusion‐related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic Margin. J. Geol. Soc., 163, 789–800.
    [Google Scholar]
  22. Hansen, J.P.V., Cartwright, J.A., Huuse, M. & Clausen, O.R. (2005) 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, Offshore Mid‐Norway. Basin Res., 17, 123–139.
    [Google Scholar]
  23. Hansen, D.M., Redfern, J., Federici, F., di Biase, D. & Bertozzi, G. (2008) Miocene igneous activity in the Northern Subbasin, offshore Senegal, NW Africa. Mar. Pet. Geol., 25, 1–15.
    [Google Scholar]
  24. Holford, S.P., Schofield, N., MacDonald, J.D., Duddy, I.R. & Green, P.F. (2012) Seismic analysis of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity: examples from the Southern Australian Margin. APPEA J., 52, 23.
    [Google Scholar]
  25. Hongxing, G. & Anderson, J.K. (2007) Fault Throw profile and Kinetmatics of Normal Fault: conceptual Models and Geologic Examples. Geol. J. China Univ., 13, 13.
    [Google Scholar]
  26. Hovland, M., Croker, P.F. & Martin, M. (1994) Fault‐associated seabed mounds (carbonate knolls?) off western Ireland and north‐west Australia. Mar. Pet. Geol., 11, 14.
    [Google Scholar]
  27. Hovland, M., Gardner, J. & Judd, A. (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2, 127–136.
    [Google Scholar]
  28. Hovland, M., Svensen, H., Forsberg, C.F., Johansen, H., Fichler, C., Fosså, J.H., Jonsson, R. & Rueslåtten, H. (2005) Complex pockmarks with carbonate‐ridges off mid‐Norway: products of sediment degassing. Mar. Geol., 218, 191–206.
    [Google Scholar]
  29. Huuse, M., Jackson, C.A.L., Van Rensbergen, P., Davies, R.J., Flemings, P.B. & Dixon, R.J. (2010) Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview. Basin Res., 22, 342–360.
    [Google Scholar]
  30. Isola, I., Mazzarini, F., Bonini, M. & Corti, G. (2014) Spatial variability of volcanic features in early‐stage rift settings: the case of the Tanzania Divergence, East African rift system. Terra Nova, 26, 461–468.
    [Google Scholar]
  31. Jackson, C.A.‐L. (2012) Seismic reflection imaging and controls on the preservation of ancient sill‐fed magmatic vents. J. Geol. Soc., 169, 503–506.
    [Google Scholar]
  32. Jackson, C.A.L. & Rotevatn, A. (2013) 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: a test of competing fault growth models. J. Struct. Geol., 54, 215.
    [Google Scholar]
  33. Jamtveit, B., Svensen, H., Podladchikov, Y.Y. & Planke, S. (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Phys. Geol. High‐level Magn. Syst., 234, 233–241.
    [Google Scholar]
  34. Jitmahantakul, S. & McClay, K. (2013) Late Triassic ‐ Mid‐Jurassic to Neogene Extensional Fault Systems in the Exmouth Sub‐Basin, Northern Carnarvon Basin, North West Shelf, Western Australia. (Ed. by M.Keep & S. J.Moss ). The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA, 2013.
  35. Le Corvec, N., Spörli, K.B., Rowland, J. & Lindsay, J. (2013) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci. Rev., 124, 96–114.
    [Google Scholar]
  36. Ligtenberg, J.H. (2005) Detection of fluid migration pathways in seismic data: implications for fault seal analysis. Basin Res., 17, 141–153.
    [Google Scholar]
  37. Long, J.J. & Imber, J. (2010) Geometrically coherent continuous deformation in the volume surrounding a seismically imaged normal fault‐array. J. Struct. Geol., 32, 222–234.
    [Google Scholar]
  38. Magee, C., Briggs, F. & Jackson, C.A.‐L. (2013a) Lithological controls on igneous intrusion‐induced ground deformation. J. Geol. Soc., 170, 853–856.
    [Google Scholar]
  39. Magee, C., Hunt‐Stewart, E. & Jackson, C.A.L. (2013b) Volcano growth mechanisms and the role of sub‐volcanic intrusions: insights from 2D seismic reflection data. Earth Planet. Sci. Lett., 373, 41–53.
    [Google Scholar]
  40. Magee, C., Jackson, C.A.‐L. & Schofield, N. (2013c) The influence of normal fault geometry on igneous sill emplacement and morphology. Geology, 41, 407–410.
    [Google Scholar]
  41. Magee, C., Jackson, C.L. & Schofield, N. (2014a) Diachronous sub‐volcanic intrusion along deep‐water margins: insights from the Irish Rockall Basin. Basin Res., 26, 85–105.
    [Google Scholar]
  42. Magee, C., McDermott, K.G., Stevenson, C.T. & Jackson, C.A.‐L. (2014b) Influence of crystallised igneous intrusions on fault nucleation and reactivation during continental extension. J. Struct. Geol., 62, 183–193.
    [Google Scholar]
  43. Mansfield, C.S. & Cartwright, J.A. (1996) High resolution fault displacement mapping from three‐dimensional seismic data: evidence for dip linkage during fault growth. J. Struct. Geol., 18, 14.
    [Google Scholar]
  44. Mazzarini, F. (2007) Vent distribution and crustal thickness in stretched continental crust: the case of the Afar Depression (Ethiopia). Geosphere, 3, 152–162.
    [Google Scholar]
  45. McClay, K., Scarselli, N. & Jitmahantakul, S. (2013) Igneous Intrusions in the Carnarvon Basin, NW Shelf, Australia. In: The Sedimentary Basins of Western Australia IV (Ed. by M.Keep , S.J.Moss ), Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA, 20pp.
    [Google Scholar]
  46. Mihut, D. & Müller, R.D. (1998) Volcanic margin formation and Mesozoic rift propagators in the Cuvier Abyssal Plain off Western Australia. J. Geophys. Res., 103, 27135–27149.
    [Google Scholar]
  47. Muraoka, H. & Kamata, H. (1983) Displacement distribution along minor fault traces. J. Struct. Geol., 5, 483–495.
    [Google Scholar]
  48. Paulsen, T.S. & Wilson, T.J. (2010) New criteria for systematic mapping and reliability assessment of monogenetic volcanic vent alignments and elongate volcanic vents for crustal stress analyses. Tectonophysics, 482, 16–28.
    [Google Scholar]
  49. Planke, S., Rasmussen, T., Rey, S.S. & Myklebust, R. (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre Basins. In: Petroleum Geology: North‐West Europe and Global Perspectives ‐ Proceddings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré ), pp. 833–844. Geological Society, London.
    [Google Scholar]
  50. Rasband, W.S. (1997) Imagej. US National Institutes of Health, Bethesda, MD, USA.
    [Google Scholar]
  51. Rey, S.S., Planke, S., Symonds, P.A. & Faleide, J.I. (2008) Seismic volcanostratigraphy of the Gascoyne margin, Western Australia. J. Volcanol. Geoth. Res., 172, 112–131.
    [Google Scholar]
  52. Roberts, K.S., Davies, R.J., Stewart, S.A. & Tingay, M. (2011) Structural controls on mud volcano vent distributions: examples from Azerbaijan and Lusi, East Java. J. Geol. Soc., 168, 1013–1030.
    [Google Scholar]
  53. Rohrman, M. (2013) Intrusive large igneous provinces below sedimentary basins: an example from the Exmouth Plateau (NW Australia). J. Geophys. Res.: Solid Earth, 118, 4477–4487.
    [Google Scholar]
  54. Skogly, O. (1998) Seismic Characterization and Emplacement of Intrusives in the Vøring Basin. M.Sc. Thesis Thesis, University of Oslo.
  55. Smallwood, J.R. & Maresh, J. (2002) The Properties, Morphology and Distribution of Igneous Sills: modelling, Borehole Data and 3D Seismic from the Faroe‐Shetland Area. In: The North Atlantic Igneous Province: Stratigraphy, Tectonic, Volcanic and Magmatic Processes (Ed. by D.W.Jolley & B.R.Bell ), 197, pp. 271–306. Geological Society, London, Special Publications.
    [Google Scholar]
  56. Stewart, S.A. (1999) Seismic interpretation of circular geological structures. Petrol. Geosci., 5, 12.
    [Google Scholar]
  57. Stewart, S.A. & Davies, R.J. (2006) Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG Bull., 90, 771–786.
    [Google Scholar]
  58. Svensen, H., Planke, S., Jamtveit, B. & Pedersen, T. (2003) Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Vøring Basin, the Norwegian Sea. Geo‐Mar. Lett., 23, 351–358.
    [Google Scholar]
  59. Svensen, H., Planke, S., Malthe‐Sorenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T. & Rey, S.S. (2004) Release of methane from a volcanic basin as a mechanism for initial eocene global warming. Nature, 429, 542–545.
    [Google Scholar]
  60. Svensen, H., Jamtveit, B., Planke, S. & Chevallier, L. (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J. Geol. Soc., 163, 11.
    [Google Scholar]
  61. Symonds, P.A., Planke, S., Frey, O. & Skogseid, J. (1998) Volcanic Evolution of the Western Australian Continental Margin and Its Implications for Basin Development. The Sedimentary Basins of Western Australia 2: Proc. of Petroleum Society Australia Symposium, Perth, WA.
  62. Thomson, K. (2005) Volcanic features of the North Rockall Trough: application of visualisation techniques on 3D seismic reflection data. Bull. Volcanol., 67, 116–128.
    [Google Scholar]
  63. Tindale, K., Newell, N., Keall, J. & Smith, N. (1998). Structural Evolution and Charge History of the Exmouth Sub‐Basin, Northern Carnarvon Basin, Western Australia. The Sedimentary Basins of Western Australia 2: Proc. of Petroleum Society Australia Symposium, Perth, WA.
  64. Trude, J., Cartwright, J., Davies, R.J. & Smallwood, J.R. (2003) New technique for dating igneous sills. Geology, 31, 4.
    [Google Scholar]
  65. Tvedt, A., Rotevatn, A., Jackson, C.A.‐L., Fossen, H. & Gawthorpe, R.L. (2013) Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea. J. Struct. Geol., 55, 1–20.
    [Google Scholar]
  66. Valentine, G. & Krogh, K. (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center – the role of pre‐existing structure (Paiute Ridge, Southern Nevada, USA). Earth Planet. Sci. Lett., 246, 217–230.
    [Google Scholar]
  67. Walsh, J.J. & Watterson, J. (1989) Displacement gradients on fault surfaces. J. Struct. Geol., 11, 307–316.
    [Google Scholar]
  68. Walsh, J., Watterson, J., Heath, A. & Childs, C. (1998) Representation and scaling of faults in fluid flow models. Petrol. Geosci., 4, 241–251.
    [Google Scholar]
  69. Whipp, P.S., Jackson, C.A.L., Gawthorpe, R.L., Dreyer, T. & Quinn, D. (2014) Normal fault array evolution above a reactivated rift fabric; a subsurface example from the Northern Horda Platform, Norwegian North Sea. Basin Res., 26, 523–549.
    [Google Scholar]
  70. Yielding, G., Freeman, B. & Needham, D.T. (1997) Quantitative fault seal prediction. AAPG Bull., 81, 897–917.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12111
Loading
/content/journals/10.1111/bre.12111
Loading

Data & Media loading...

Supplements

. Uninterpreted seismic sections corresponding to Figs 7a, 7b and 9a.

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error