1887
Volume 64 Number 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Optimizing the productivity of nonconventional, low‐permeability “shale” reservoirs requires detailed knowledge of the mechanical properties of such materials. These rocks' elastic anisotropy is acknowledged but usually ignored due to difficulties in obtaining such information. Here we study in detail the dynamic and static elastic properties of a suite of calcareous mudstones from the nonconventional Duvernay reservoir of Alberta, Canada. The complete set of transversely isotropic elastic constants is obtained from strategically oriented ultrasonic transducers to confining pressures of 90 MPa. Wave speed anisotropies of up to 35% are observed at even the highest confining pressures. Furthermore, the stress sensitivity of the wave speeds, and hence moduli, is itself highly dependent on direction with speeds taken perpendicular to the bedding plane being highly nonlinearly dependent on pressure, whereas those along the bedding plane show, unexpectedly, nearly no pressure dependence. These observations are in qualitative agreement with the preferentially oriented porosity and minerals seen in scanning electron microscope images. These results may be significant to the interpretation of sonic logs and azimuthal amplitude versus offset for principal stress directions, for the concentration of stress within such formations, and for estimation of static engineering moduli from sonic log wave speeds.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12403
2016-06-14
2024-03-28
Loading full text...

Full text loading...

References

  1. AghighiM.A. and RahmanS.S.2010. Horizontal permeability anisotropy: Effect upon the evaluation and design of primary and secondary hydraulic fracture treatments in tight gas reservoirs. Journal of Petroleum Science and Engineering74, 4–13.
    [Google Scholar]
  2. AGS
    AGS . 2015. Alberta Earthquake Studies Project. Vol. 2015.
  3. AmadeiB.1996. Importance of anisotropy when estimating and measuring in situ stresses in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts33, 293–325.
    [Google Scholar]
  4. AndersonS., RokoshC.D., PawlowiczJ.G., BerhaneH. and BeatonA.P.2010. Mineralogy, Permeametry, Mercury Porosimetry, Pycnometry and Scanning Electron Microscope Imaging of Duvernay and Muskwa Formations in Alberta: Shale Gas Data Release. In: Open File Reports, ERCB/AGS Open File Report 2010–02, p. 67. Alberta Geological Survey.
    [Google Scholar]
  5. AsefM.R. and NajibiA.R.2013. The effect of confining pressure on elastic wave velocities and dynamic to static Young's modulus ratio. Geophysics78, D135–D142.
    [Google Scholar]
  6. AuldB.A.1973. Acoustic Fields and Waves in Solids. Wiley‐Interscience Publication.
    [Google Scholar]
  7. BallandC. and RenaudV.2009. High‐resolution velocity field imaging around a borehole: Excavation‐damaged zone characterization. Geophysics74, E223–E232.
    [Google Scholar]
  8. BirchF.1961. Velocity of compressional waves in rocks to 10 kilobars: 2. Journal of Geophysical Research66, 2199–2224.
    [Google Scholar]
  9. BlumT.E., AdamL. and van WijkK.2013. Noncontacting benchtop measurements of the elastic properties of shales. Geophysics78, C25–C31.
    [Google Scholar]
  10. BraceW.F.1965. Some new measurements of linear compressibility of rocks. Journal of Geophysical Research70, 391–398.
    [Google Scholar]
  11. CheadleS.P., BrownR.J. and LawtonD.C.1991. Orthorhombic anisotropy: A physical seismic modeling study. Geophysics56, 1603–1613.
    [Google Scholar]
  12. ChenevertM.E. and GatlinC.1965. Mechanical anisotropies of laminated sedimentary rocks. Society of Petroleum Engineers Journal67–77.
    [Google Scholar]
  13. ChengC.H. and JohnstonD.H.1981. Dynamic and static moduli. Geophysical Research Letters8, 39–42.
    [Google Scholar]
  14. CholachP.Y. and SchmittD.R.2006. Intrinsic elasticity of a textured transversely isotropic muscovite aggregate: Comparisons to the seismic anisotropy of schists and shales. Journal of Geophysical Research: Solid Earth111.
    [Google Scholar]
  15. ChristmanD.R., IsbellW.M., BabcockS.G., McMillanA.R. and GreenS.J.1971. Measurements of dynamic properties of materials, Vol. III6061‐T6 Aluminum. p. 156.
  16. CiccottiM. and MulargiaE.2004. Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophysical Journal International157, 474–477.
    [Google Scholar]
  17. ClarksonC.R., SolanoN., BustinR.M., BustinA.M.M., ChalmersG.R.L., HeL.et al. 2013. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel103, 606–616.
    [Google Scholar]
  18. ColletO., GurevichB., MadadiM. and PervukhinaM.2014. Modeling elastic anisotropy resulting from the application of triaxial stress. Geophysics79, C135–C145.
    [Google Scholar]
  19. CrampinS.1981. A review of wave motion in anisotropic and cracked elastic‐media. Wave Motion3, 343–391.
    [Google Scholar]
  20. DewhurstD.N. and SigginsA.F.2006. Impact of fabric, microcracks and stress field on shale anisotropy. Geophysical Journal International165, 135–148.
    [Google Scholar]
  21. FangX.D., FehlerM., ZhuZ.Y., ChenT.R., BrownS., ChengA.et al. 2013. An approach for predicting stress‐induced anisotropy around a borehole. Geophysics78, D143–D150.
    [Google Scholar]
  22. FjærE.2009. Static and dynamic moduli of a weak sandstone. Geophysics74, WA103–WA112.
    [Google Scholar]
  23. FungY.C.1965. Foundations of Solid Mechanics. Prentice Hall.
    [Google Scholar]
  24. GaedeO., KarpfingerF., JockerJ. and PrioulR.2012. Comparison between analytical and 3D finite element solutions for borehole stresses in anisotropic elastic. International Journal of Rock Mechanics and Mining Sciences51, 53–63.
    [Google Scholar]
  25. GautamR. and WongR.C.K.2006. Transversely isotropic stiffness parameters and their measurement in Colorado shale. Canadian Geotechnical Journal43, 1290–1305.
    [Google Scholar]
  26. GholamiR., RasouliV., AadnoyB. and MohammadiR.2015. Application of in situ stress estimation methods in wellbore stability analysis under isotropic and anisotropic conditions. Journal of Geophysics and Engineering12, 657–673.
    [Google Scholar]
  27. GorbatsevichF.F. and KovalevskiyM.V.2015. Experience in applying the acoustopolarization method for metamorphosed rock samples from the Kola (SG‐3), German (KTB‐HB) and Finnish (OKU) investigation boreholes. Acta Geodynamica et Geomaterialia12, 91–100.
  28. HengS., GuoY.T., YangC.H., DaemenJ.J.K. and LiZ.2015. Experimental and theoretical study of the anisotropic properties of shale. International Journal of Rock Mechanics and Mining Sciences74, 58–68.
    [Google Scholar]
  29. HofmanR.2006. Frequency dependent elastic and anelastic properties of clastic rocks. PhD thesis, Colorado School of Mines, USA.
  30. HoltR.M., BauerA., FjærE., StenebråtenJ.F. and SzewczykD.2015a. Relating static and dynamic mechanical anisotropies of shale. 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
  31. HoltR.M., FjaerE., StenebratenJ.F. and NesO.M.2015b. Brittleness of shales: Relevance to borehole collapse and hydraulic fracturing. Journal of Petroleum Science and Engineering131, 200–209.
    [Google Scholar]
  32. HoltR.M., NesO.M., StenebratenJ.F. and FjaerE.2012. Static vs. dynamic behavior of shale. 46th US Rock Mechanics/Geomechanics Symposium, p. 12. American Rock Mechanics Association.
  33. HomandF., MorelE., HenryJ.P., CuxacP. and HammadeE.1993. Characterization of the moduli of elasticity of an anisotropic rock using dynamic and static methods. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts30, 527–535.
    [Google Scholar]
  34. HsuC.J., KaneM.R., WinklerK., WangC.Y. and JohnsonD.L.2011. Experiments on stress dependent borehole acoustic waves. Journal of the Acoustical Society of America130, 1799–1809.
    [Google Scholar]
  35. IslamM.A. and SkalleP.2013. An experimental investigation of shale mechanical properties through drained and undrained test mechanisms. Rock Mechanics and Rock Engineering46, 1391–1413.
    [Google Scholar]
  36. JaegerJ.C., CookN.G.W. and ZimmermanR.W.2007. Fundamentals of Rock Mechanics, 4th edn. Blackwell.
    [Google Scholar]
  37. JakobsenM. and JohansenT.A.2000. Anisotropic approximations for mudrocks: A seismic laboratory study. Geophysics65, 1711–1725.
    [Google Scholar]
  38. JiaQ., SchmittD.R., MoeckI. and KofmanR.S.2014. Improving borehole instability analysis by investigating the impacts of stress and rock anisotropy. GeoConvention 2014, p. 7. Canadian Society of Exploration Geophysicists.
    [Google Scholar]
  39. JinY., YuanJ., HouB., ChenM., LuY., LiS.et al. 2012. Analysis of the vertical borehole stability in anisotropic rock formations. Journal of Petroleum Exploration and Production Technology2, 197–207.
    [Google Scholar]
  40. JizbaD.1991. Mechanical and acoustical properties of sandstones and shales. PhD thesis, Stanford University, USA, 275 pp.
  41. JizbaD. and NurA.1990. Static and dynamic moduli of tight gas sandstones and their relation to formation properties (SPWLA‐1990‐BB). 31st Annual Symposium, pp. 1–21. Society of Petrophysicists and Well Log Analysts.
    [Google Scholar]
  42. JohnsonP.A. and RasolofosaonP.N.J.1996. Nonlinear elasticity and stress‐induced anisotropy in rock. Journal of Geophysical Research: Solid Earth101, 3113–3124.
    [Google Scholar]
  43. JohnstonJ.E. and ChristensenN.I.1995. Seismic anisotropy of shales. Journal of Geophysical Research: Solid Earth100, 5991–6003.
    [Google Scholar]
  44. KaarsbergE.A.1959. Introductory studies of natural and artificial argillaceous aggregates by sound‐propagation and x‐ray diffraction methods. Journal of Geology67, 447–472.
    [Google Scholar]
  45. KawasakiI. and TanimotoT.1981. Radiation‐patterns of body waves due to the seismic dislocation occurring in an anisotropic source medium. Bulletin of the Seismological Society of America71, 37–50.
    [Google Scholar]
  46. KingA. and TalebiS.2007. Anisotropy effects on microseismic event location. Pure and Applied Geophysics164, 2141–2156.
    [Google Scholar]
  47. KingM.S.1969. Static and dynamic elastic moduli of rocks under pressure. pp. 329–351. American Rock Mechanics Association.
  48. LiJ.L., LiC., MortonS.A., DohmenT., KataharaK. and ToksozM.N.2014. Microseismic joint location and anisotropic velocity inversion for hydraulic fracturing in a tight Bakken reservoir. Geophysics79, C111–C122.
    [Google Scholar]
  49. LokajicekT. and SvitekT.2015. Laboratory measurement of elastic anisotropy on spherical rock samples by longitudinal and transverse sounding under confining pressure. Ultrasonics56, 294–302.
    [Google Scholar]
  50. MahM. and SchmittD.R.2001a. Experimental determination of the elastic coefficients of an orthorhombic material. Geophysics66, 1217–1225.
    [Google Scholar]
  51. MahM. and SchmittD.R.2001b. Near point‐source longitudinal and transverse mode ultrasonic arrays for material characterization. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control48, 691–698.
    [Google Scholar]
  52. MashinskyE.I.2003. Differences between static and dynamic elastic moduli of rocks: Physical causes. Geologiya i Geofizika44, 953–959.
  53. MaxwellS.C., ZhangF. and DamjanacB.2014. Geomechanical assessment of seismic hazard from hydraulic fracturing. GeoConvention 2015, p. 4. Canadian Society of Exploration Geophysicists.
    [Google Scholar]
  54. MbiaE.N., FabriciusI.L., KrogsbøllA., FrykmanP. and DalhoffF.2014. Permeability, compressibility and porosity of Jurassic shale from the Norwegian–Danish Basin. Petroleum Geoscience20, 257–281.
    [Google Scholar]
  55. McLamoreR. and GrayK.E.1967. The mechanical behavior of anisotropic sedimentary rocks. Journal of Manufacturing Science and Engineering89, 62–73.
    [Google Scholar]
  56. Meléndez MartinezJ.2014. Elastic properties of sedimentary rocks. PhD thesis, University of Alberta, Canada, 242 pp.
    [Google Scholar]
  57. Melendez MartinezJ. and SchmittD.R.2015. A comparative study of the anisotropic dynamic and static elastic moduli of unconventional reservoir shales: Implication for geomechanical investigations. Geophysics submitted, 51 pp.
    [Google Scholar]
  58. MillerD., PlumbR. and BoitnottG.2013. Compressive strength and elastic properties of a transversely isotropic calcareous mudstone. Geophysical Prospecting61, 315–328.
    [Google Scholar]
  59. NadriD., SaroutJ., BonaA. and DewhurstD.2012. Estimation of the anisotropy parameters of transversely isotropic shales with a tilted symmetry axis. Geophysical Journal International190, 1197–1203.
    [Google Scholar]
  60. NaraY., KatoH., YonedaT. and KanekoK.2011. Determination of three‐dimensional microcrack distribution and principal axes for granite using a polyhedral specimen. International Journal of Rock Mechanics and Mining Sciences48, 316–335.
    [Google Scholar]
  61. NiandouH., ShaoJ.F., HenryJ.P. and FourmaintrauxD.1997. Laboratory investigation of the behaviour of Tournemire shale. International Journal of Rock Mechanics and Mining Sciences34, 3–16.
    [Google Scholar]
  62. NurA. and SimmonsG.1969. Stress‐induced velocity anisotropy in rock: An experimental study. Journal of Geophysical Research74, 6667–6674.
    [Google Scholar]
  63. OdaM., YamabeT. and KamemuraK.1986. A crack tensor and its relation to wave velocity anisotropy in jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts23, 387–397.
    [Google Scholar]
  64. OngS.H. and RoegiersJ.C.1996. Fracture initiation from inclined wellbores in anisotropic formations. Journal of Petroleum Technology48, 612–619.
    [Google Scholar]
  65. PlonaT.J., KaneM.R., SinhaB. and WalshJ.2002. Evaluating stress‐induced anisotropy and mechanical damage from cross‐dipole sonic data using dispersion analysis (SPE/ISRM 78233). SPE/ISRM Rock Mechanics Conference, p. 6. Society of Petroleum Engineers.
    [Google Scholar]
  66. PostmaG.W.1955. Wave propagation in stratified media. Geophysics20, 780–806.
    [Google Scholar]
  67. RokoshC.D., LysterS., AndersonS.D.A., BeatonA.P., BerhaneH., BrazzoniT.et al. 2012. Summary of Alberta's Shale‐ and Siltstone‐Hosted Hydrocarbons. p. 191.
  68. Ruiz PenaF.1998. Elastic properties of sedimentary anisotropic rocks. MSc thesis, Massachusetts Institute of Technology, USA, 132 pp.
    [Google Scholar]
  69. SaroutJ., EstebanL., Delle PianeC., ManeyB. and DewhurstD.N.2014. Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress. Geophysical Journal International198, 1662–1682.
    [Google Scholar]
  70. SaroutJ. and GueguenY.2008a. Anisotropy of elastic wave velocities in deformed shales: Part 1—Experimental results. Geophysics73, D75–D89.
    [Google Scholar]
  71. SaroutJ. and GueguenY.2008b. Anisotropy of elastic wave velocities in deformed shales: Part 2—Modeling results. Geophysics73, D91–D103.
    [Google Scholar]
  72. SaroutJ., MolezL., GueguenY. and HoteitN.2007. Shale dynamic properties and anisotropy under triaxial loading: Experimental and theoretical investigations. Physics and Chemistry of the Earth32, 896–906.
    [Google Scholar]
  73. SayersC.M.2013. The effect of anisotropy on the Young's moduli and Poisson's ratios of shales. Geophysical Prospecting61, 416–426.
    [Google Scholar]
  74. SayersC.M. and KachanovM.1995. Microcrack‐induced elastic‐wave anisotropy of brittle rocks. Journal of Geophysical Research: Solid Earth100, 4149–4156.
    [Google Scholar]
  75. SchijnsH., SchmittD.R., HeikkinenP.J. and KukkonenI.T.2012. Seismic anisotropy in the crystalline upper crust: Observations and modelling from the Outokumpu scientific borehole, Finland. Geophysical Journal International189, 541–553.
    [Google Scholar]
  76. SchmittD.R.2015. 11.03 ‐ Geophysical properties of the near surface earth: Seismic properties. In:Treatise on Geophysics), 2nd edn (ed G. Schubert, pp. 43–87. Elsevier.
    [Google Scholar]
  77. SchmittD.R., CurrieC.A. and ZhangL.2012. Crustal stress determination from boreholes and rock cores: Fundamental principles. Tectonophysics580, 1–26.
    [Google Scholar]
  78. SchultzL.G., TourtelotH.A., GillJ.R. and BoerngenJ.G.1980. Composition and properties of the Pierre Shale and equivalent rocks, northern Great Plains region. In: Professional Paper.
    [Google Scholar]
  79. ShelleyA., SavageM., WilliamsC., AokiY. and GurevichB.2014. Modeling shear wave splitting due to stress‐induced anisotropy, with an application to Mount Asama Volcano, Japan. Journal of Geophysical Research: Solid Earth119, 4269–4286.
    [Google Scholar]
  80. SimmonsG. and BraceW.1965. Comparison of static and dynamic measurements of compressibility of rocks. Journal of Geophysical Research70, 5649–5656.
    [Google Scholar]
  81. SinhaB.K., KaneM.R. and FrignetB.2000. Dipole dispersion crossover and sonic logs in a limestone reservoir. Geophysics65, 390–407.
    [Google Scholar]
  82. SondergeldC.H., AmbroseR.J., RaiC.S. and MoncrieffJ.2010. Micro‐structural studies of gas shales (SPE 131771). SPE Unconventional Gas Conference, p. 17. Society of Petroleum Engineers.
  83. SoneH. and ZobackM.D.2013. Mechanical properties of shale‐gas reservoir rocks — Part 1: Static and dynamic elastic properties and anisotropy. Geophysics78, D378–D389.
    [Google Scholar]
  84. Suarez‐RiveraR., WillsonS., NakagawaS. and Magnar‐NessO.2001. Frequency scaling for evaluation of shale and mudstone properties from acoustic velocities. EOS Transactions American Geophysical Union82, 1.
    [Google Scholar]
  85. TangX.M. and ChengA.2004. Quantitative Borehole Acoustic Methods. Elsevier.
    [Google Scholar]
  86. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  87. VahidS. and AhmadG.2011. Hydraulic fracture initiation from a wellbore in transversely isotropic rock. 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
    [Google Scholar]
  88. VavryčukV.2005. Focal mechanisms in anisotropic media. Geophysical Journal International161, 334–346.
    [Google Scholar]
  89. VernikL. and LiuX.Z.1997. Velocity anisotropy in shales: A petrophysical study. Geophysics62, 521–532.
    [Google Scholar]
  90. VoigtW.1928. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). B.G. Teubner.
    [Google Scholar]
  91. WangZ.J.2002a. Seismic anisotropy in sedimentary rocks, part 1: A single‐plug laboratory method. Geophysics67, 1415–1422.
    [Google Scholar]
  92. WangZ.J.2002b. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data. Geophysics67, 1423–1440.
    [Google Scholar]
  93. WatersG.A., LewisR.E. and BentleyD.2011. The Effect of Mechanical Properties Anisotropy in the Generation of Hydraulic Fractures in Organic Shales. Society of Petroleum Engineers.
  94. WinklerK.W.1996. Azimuthal velocity variations caused by borehole stress concentrations. Journal of Geophysical Research: Solid Earth101, 8615–8621.
    [Google Scholar]
  95. WinklerK.W. and D'AngeloR.2006. Ultrasonic borehole velocity imaging. Geophysics71, F25–F30.
    [Google Scholar]
  96. WongR.C.K., SchmittD.R., CollisD. and GautamR.2008. Inherent transversely isotropic elastic parameters of over‐consolidated shale measured by ultrasonic waves and their comparison with static and acoustic in situ log measurements. Journal of Geophysics and Engineering5, 103–117.
    [Google Scholar]
  97. WüstR.A., NassichukB.R. and BustinR.M.2013. Porosity characterization of various organic‐rich shales from the Western Canada Sedimentary Basin, Alberta and British Columbia, Canada. In: Electron Microscopy of Shale Hydrocarbon Reservoirs, Vol. 102 (eds W.Camp , E.Diaz , and B.Wawak ), pp. 81–100. American Association of Petroleum Geologists.
    [Google Scholar]
  98. ZismanW.A.1933. Compressibility and anisotropy of rocks at and near the Earth's surface. Proceedings of the National Academy of Sciences of the United States of America19, 666–679.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12403
Loading
/content/journals/10.1111/1365-2478.12403
Loading

Data & Media loading...

Supplements

Supplementary Material

EXCEL
  • Article Type: Research Article
Keyword(s): Acoustics; Anisotropy; Petrophysics; Rock Physics; Seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error