1887
Volume 14 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Electromagnetic induction instruments (also called loop–loop, dipole–dipole, or Slingram) are now commonly used in archaeological prospecting. They are truly light instruments, which are able to measure both the apparent electrical conductivity and the apparent magnetic susceptibility of the ground. During a field test in Bahrain Island where the soil has a high clay content and a high salt content, surprisingly high values of in‐phase response were obtained at all inter‐coil spacings using CMD “Mini‐Explorer” (GF Instruments Ltd., Brno, Czech Republic) at 30 kHz, in both horizontal coplanar and vertical coplanar configurations, and the horizontal coplanar and vertical coplanar susceptibility variations were in total opposition. This apparent discrepancy is explained by considering the in‐phase responses to be dominated by the relative dielectric permittivity. Using the raw and in‐phase vertical coplanar and horizontal coplanar data, it is possible to determine and map the apparent permittivity and apparent magnetic susceptibility. For this case of slated soils with high clay content, the relative permittivity is strong but in agreement with both experimental data at lower frequencies and theoretical models reported in the literature.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016023
2016-03-01
2024-04-16
Loading full text...

Full text loading...

References

  1. BibbyT.G.1972. Looking for Dilmun(Pelican Series).Harmondsworth, UK: Penguin Books.
    [Google Scholar]
  2. BonsallJ., FryR., GaffneyC., ArmitI., BeckA. and GaffneyV.2013. Assessment of the CMD Mini‐Explorer, a new low‐frequency multi‐coil electromagnetic device for archaeological investigations.Archaeological Prospection20, 219–231.
    [Google Scholar]
  3. BörnerF., GruhneM. and SchönJ.1993. Contamination indications derived from electrical properties in the low frequency range.Geophysical Prospecting41, 83–98.
    [Google Scholar]
  4. CosenzaP., GhorbaniA., RevilA., ZamoraM., SchumtzM., JougnotD. et al. 2008. A physical model of the low‐frequency electrical polarization of clay rocks.Journal of Geophysical Research113, B08204.
    [Google Scholar]
  5. CrawfordH.1998. Dilmun and its Gulf Neighbours. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  6. De SmedtP., SaeyT., MeerschmanE., De ReuJ., De ClercqW. and van MeirvenneM.2014. Comparing apparent magnetic susceptibility measurements of a multi‐receiver EMI sensor with topsoil and profile magnetic susceptibility data over weak magnetic anomalies.Archaeological Prospection21, 103–112.
    [Google Scholar]
  7. DesvignesG., TabbaghA. and BenechC.1999. About the determination of magnetic anomaly sources.Archaeological Prospection6, 85–105.
    [Google Scholar]
  8. FarquharsonC.G., OldenburgD.W. and RouthP.S.2003. Simultaneous 1D inversion of loop‐loop electromagnetic data for magnetic susceptibility and electrical conductivity.Geophysics68, 1857–1869.
    [Google Scholar]
  9. FrohlichB. and LancasterW.J.1986. Electromagnetic surveying in current Middle Eastern archaeology: Application and evaluation.Geophysics51, 1414–1425.
    [Google Scholar]
  10. GlobP.V.1968. Al‐Bahrain: De Danske ekspeditioner til oldtidens Dilmun. Klicheer: Kondrup & Rasmussen.
    [Google Scholar]
  11. HodgesG.2004. Mapping conductivity, magnetic susceptibility, and dielectric permittivity with helicopter electromagnetic data.74th SEG annual meeting, Denver, USA, 10–15 October 2004.
    [Google Scholar]
  12. HuangH. and FraserD.C.2001. Mapping of the resistivity, susceptibility and permittivity of the earth using a helicopter‐borne electromagnetic system.Geophysics66, 148–157.
    [Google Scholar]
  13. LombardP. (ed) 1999. Bahreïn. La civilisation des Deux Mers, de Dilmoun à Tylos. Catalogue de l'exposition organisée à l'Institut du Monde Arabe (Paris), du 18 mai au 29 aoÛt 1999, Institut du Monde Arabe & Éditions SNZ, Paris et Gand.
    [Google Scholar]
  14. MullinsC.E.1974. The magnetic properties of the soil and their application to archaeological prospecting.Archaeo‐Physika5, 133–347.
    [Google Scholar]
  15. KemnaA., BinleyA., CassianiG., NiederleithingerE., RevilA., SlaterL. et al. 2012. An overview of the spectral induced polarization method for near surface applications.Near Surface Geophysics10, 453–468.
    [Google Scholar]
  16. KessouriP.2012. Mesure simultanée aux fréquences moyennes et cartographie de la permittivité diélectrique et de la conductivité électrique du sol.PhD thesis, Université Pierre et Marie Curie, France, 230pp.
    [Google Scholar]
  17. OkayG., LeroyP., GhorbaniA., CosenzaP., CamerlynckC., CabreraJ. et al. 2014. Spectral induced polarization of clay‐sand mixtures: Experiments and modeling.Geophysics79(6), E353–E375.
    [Google Scholar]
  18. PétronilleM., ThiessonJ., SimonF.‐X. and BuchsenschutzO.2010. Magnetic signal prospecting using multiparameter measurements: The case study of the Gallic site of Levroux.Archaeological Prospection17, 141–150.
    [Google Scholar]
  19. RevilA.2013. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1 GHz.Water Resources Research49, 306–327.
    [Google Scholar]
  20. ScollarI., TabbaghA., HesseA. and HerzogI.1990. Archaeological Prospecting and Remote Sensing. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  21. TabbaghA., CosenzaP., GhorbaniA., GuérinR. and FlorschN.2009. Modelling Maxwell‐Wagner induced polarization amplitude for clayed material.Journal of Applied Geophysics67, 109–113.
    [Google Scholar]
  22. ThiessonJ., KessouriP., SchamperC. and TabbaghA.2014. Calibration of frequency‐domain electromagnetic devices used in near‐surface surveying.Near Surface Geophysics12, 481–491.
    [Google Scholar]
  23. WellerA., SlaterL., HuismanJ.A., EsserO. and HaegelF.‐H.2015. On the specific polarizability of sands and sand‐clay mixtures.Geophysics80, A57–A61.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016023
Loading
/content/journals/10.3997/1873-0604.2016023
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error