1887
Volume 14 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The NW Bohemia/Vogtland region is characterized by currently ongoing geodynamic processes within the intracontinental lithospheric mantle. Among others, this activity results in the occurrence of mid‐crustal earthquake swarms and CO degassing zones called mofettes. These two natural phenomena are related to each other since it is considered that fluid flow and fluid‐induced effective stress can trigger earthquake swarms. At the Earth’s surface, they appear spatially separated, but their connection could be explained by the existence of pathways within the crust that allow efficient and permanent fluid transport. However, neither the structure nor the position of such pathways has been imaged yet.

With this background, we used a matched field processing analysis within the NW Bohemia/Vogtland region to locate mofettes and investigate their characteristics. Considering the CO degassing process as a high‐frequency noise source, we chose two different test sites: the Dolní Částkov Borehole, which is an artificial mofette that we used to validate the method, and the South Hartoušov mofette field, a natural CO degassing area. On both sites, we measured seismic noise in a continuous mode for several hours (7 hours to 9 hours), with a sampling frequency of 250 samples/second, in multiple campaigns using an array of about 60 × 60 m2 with approximately 30 randomly distributed stations.

For the matched field processing computation, the phase velocity of the study area is required, which we obtained from active seismic experiments with vertical hammer‐blow as the source. The phase velocity varies between 200 m/s and 420 m/s for Dolní Částkov and between 100 m/s and 280 m/s for South Hartoušov, both in a frequency range of 7 Hz–60 Hz.

With the matched field processing analysis at the artificial mofette in Dolní Částkov, we could relocate the noise source successfully. In the South Hartoušov mofette field, we detected one dominant vertically extended noise source, probably a fluid pathway, as well as a small matched field processing maxima at the surface that can be related to a dry mofette.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016024
2016-03-01
2024-03-29
Loading full text...

Full text loading...

References

  1. BankwitzP., SchneiderG., KämpfH. and BankwitzE.2003. Structural characteristics of epicentral areas in Central Europe: Study case Cheb Basin (Czech Republic). Journal of Geodynamics35, 5–32.
    [Google Scholar]
  2. BräuerK., KämpfH., NiedermannS., StrauchG. and WeiseS.M.2004. Evidence for a nitrogen flux directly derived from the European subcontinental mantle in the Western Eger Rift, central Europe. Geochimica et Cosmochimica Acta68, 4935–4937.
    [Google Scholar]
  3. BräuerK., KämpfH., NiedermannS., StrauchG. and TesarJ.2008. The natural laboratory NW Bohemia: Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes. Geochemistry, Geophysics, Geosystems9, Q04018, doi: 10.1029/2007GC001921.
    [Google Scholar]
  4. BräuerK., KämpfH., KochU. and StrauchG.2011. Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Nový Kostel focal zone in the western Eger Rift, Czech Republic. Chemical Geology290, 163–176, doi: 10.1016/j.chemgeo.2011.09.012.
    [Google Scholar]
  5. BräuerK., KämpfH. and StrauchG.2009. Earthquake swarms in non‐volcanic regions: What fluids have to say. Geophysical Research Letters36, L17309, doi: 10.1029/2009GL039615.
    [Google Scholar]
  6. BräuerK., KämpfH. and StrauchG.2014. Seismically triggered anomalies in the isotope signatures of mantle‐derived gases detected at degassing sites along two neighboring faults in NW Bohemia, central Europe. Journal of Geophysical Research: Solid Earth119, 5613–5632, doi: 10.1002/2014JB011044.
    [Google Scholar]
  7. BräuerK., KämpfH., StrauchG. and WeiseS.M.2003. Isotopic evidence (3He/4He, 13CCO2) of fluid triggered intraplate seismicity. Journal of Geophysical Research: Solid Earth108(B2), 2070, doi: 10.1029/2002JB002077.
    [Google Scholar]
  8. CrosE., RouxP., VandemeulebrouckJ. and KedarS.2011. Locating hydrothermal acoustic sources at Old Faithful Geyser using matched field processing. Geophysical Journal International187, 385–393.
    [Google Scholar]
  9. DahmT. and BrandsdottirB.1997. Moment tensors of micro‐earthquakes from the Eyjafjallajökull volcano in South Iceland. Geophysical Journal International130, 183–192.
    [Google Scholar]
  10. DahmT., FischerT. and HainzlS.2008. Mechanical intrusion models and their implications for the possibility of magma‐driven swarms in NW Bohemia Region. Studia Geophysica et Geodaetica52, 529–548.
    [Google Scholar]
  11. DregerD.S., TkalcicH. and JohnstonM.2000. Dilational processes accompanying earthquakes in the Long Valley Caldera. Science288, 122–125.
    [Google Scholar]
  12. FischerT. and BachuraM.2014. Detection capability of seismic network based on noise analysis and magnitude of completeness. Journal of Seismology18, 137–150.
    [Google Scholar]
  13. FischerT., HorálekJ., HrubcováP., VavrycukV., BräuerK. and KämpfH.2014. Intra‐continental earthquake swarms in West‐Bohemia and Vogtland: A review. Tectonophysics611, 1–27, doi: 10.1016/j.tecto.2013.11.001.
    [Google Scholar]
  14. FischerT. and MichálekJ.2008. Post 2000‐swarm microearthquake activity in the principal focal zone of West Bohemia/Vogtland: Spacetime distribution and waveform similarity analysis. Studia Geophysica et Geodaetica52, 493–511.
    [Google Scholar]
  15. FlechsigC., BussertR., RechnerJ., SchützeC. and KämpfH.2008. The Hartoušov Mofette field in the Cheb Basin, Western Eger Rift (Czech Republic): A comperative geoelectric, sedimentologic and soil gas study of a magmatic diffuse CO2‐degassing structure. Zeitschrift für Geologische Wissenschaften36(3), 177–193.
    [Google Scholar]
  16. FlechsigC., FabigT., RückerC. and SchützeC.2010. Geoelectrical investigations in the Cheb Basin/W‐Bohemia: An approach to evaluate the near‐surface conductivity structure. Studia Geophysica et Geodaetica54, 417–437.
    [Google Scholar]
  17. HeinickeJ., BraunT., BurgassiP., ItalianoF. and MartinelliG.2006. Gas flow anomalies in seismogenic zones in the Upper Tiber Valley, Central Italy. Geophysical Journal International167, 794–806.
    [Google Scholar]
  18. HemmannA. and KämpfH.2002. Seismicity in the central part of the Naab‐Pritzwalk‐Rostock lineament, related to mantle fluid activity?EGS XXVII General Assembly Conference Abstracts, Nice, France, 21–26 April 2002, p. 5193.
    [Google Scholar]
  19. HemmannA., MeierT., JentzschG. and ZiegertA.2003. Similarity of waveforms and relative relocalisation of the earthquake swarm 1997/1998 near Werdau. Journal of Geodynamics35, 191–208.
    [Google Scholar]
  20. HillD.P. and PrejeanS.2005. Magmatic unrest beneath Mammoth Mountain, California. Journal of Volcanology and Geothermal Research146, 257–283, doi: 10.1016/j.jvolgeores.2005.03.002.
    [Google Scholar]
  21. HorálekJ. and FischerT.2008. Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: Just what we know (a review). Studia Geophysica et Geodaetica52, 455–478.
    [Google Scholar]
  22. HorálekJ. and FischerT.2010. Intraplate earthquake swarms in West Bohemia/Vogtland (Central Europe). Jökull60, 67–87.
    [Google Scholar]
  23. Ibs‐von SehtM., BlumensteinS., WagnerR., HollnackD. and WohlenbergJ.2001. Seismicity, seismotectonics and crustal structure of the southern Kenya rift‐new data from the Lake Magadi Area. Geophysical Journal International146, 439–453.
    [Google Scholar]
  24. JensenF.B., KupermanW.A., PorterM.B., SchmidtH. and BartramJ.F.1994. Computational Ocean Acoustics.New York: American Institute of Physics, 578 pp.
    [Google Scholar]
  25. KopeckyL.1978. Neoidic taphrogenic evolution and young alkaline volcanism of the Bohemian Massif. Journal of Geological Sciences: Geology31, 91–107.
    [Google Scholar]
  26. KornM., FunkeS. and WendtS.2008. Seismicity and seismotectonics of West Saxony, Germany—new insights from recent seismicity observed with the Saxonian seismic network. Studia Geophysica et Geodaetica52, 479–492.
    [Google Scholar]
  27. LeesJ.M.1998. Multiplet analysis at Coso geothermal. Bulletin of the Seismological Society of America88, 1127–1143.
    [Google Scholar]
  28. LegazA., RevilA., RouxP., VandemeulebrouckJ., GouédardP., HurstT.et al. 2009. Self‐potential and passive seismic monitoring of hydrothermal activity: A case study at Iodine Pool, Waimangu geothermal valley, New Zealand. Journal of Volcanology and Geothermal Research179(1), 11–18.
    [Google Scholar]
  29. MlčochB. and SkácelováZ.2009. Digital elevation model of the crystalline basement of the Cheb and Sokolov Basin areas (Western Bohemia, Central Europe). Zeitschrift für Geologische Wissenschaften37, 145–152.
    [Google Scholar]
  30. MousaviS., BauerK., KornM. and HejraniB.2015. Seismic tomography reveals a mid‐crustal magmatic body, fluid pathways and their relation to the earthquake swarms in West Bohemia/Vogtland. Accepted for publication in Geophysical Journal International.
    [Google Scholar]
  31. NeunhöferH. and HemmannA.2005. Earthquake swarms in the Vogtland/Western Bohemian region: Spatial distribution and magnitude‐frequency distribution as an indication of the genesis of swarms?Journal of Geodynamics39, 361–385.
    [Google Scholar]
  32. NickschickT., KämpfH., FlechsigC., MrlinaJ. and HeinickeJ.2015. CO2 degassing in the Hartoušov mofette area, western Eger Rift, imaged by CO2 mapping and geoelectrical and gravity surveys. International Journal of Earth Sciences (Geologische Rundschau), doi: 10.1007/s00531‐014‐1140‐4.
    [Google Scholar]
  33. ParkC.B., MillerR.D. and XiaJ.1999. Multichannel analysis of surface waves. Geophysics64, 800–808.
    [Google Scholar]
  34. PeterekA., ReutherC.D. and SchunkR.2011. Neotectonic evolution of the Cheb Basin (Northwestern Bohemia, Czech Republic) and its implications for the late Pliocene to Recent crustal deformation in the western part of the Eger Rift. Zeitschrift für Geologische Wissenschaften5(6), 335–365.
    [Google Scholar]
  35. ProdehlC., MuellerS. and HaakV.1995. The European Cenozoic Rift System. In: Continental Rifts: Evolution, Structure, and Tectonics (ed K.H.Olsen ), pp. 133–212. Developments in Geotectonics, Elsevier.
    [Google Scholar]
  36. RojíkP., DaškováJ., FejfarK.J.O., KvačekZ., PešekJ., SýkorováI.et al. 2010. Chebske panev. In: Ložiska hnědého uhlí na území České republiky a jejich využití (ed J.Pešek ), pp. 206–229. Czech Geological Survey, Prague.
    [Google Scholar]
  37. SchützeC., DietrichP. and SauerU.2013. Diagnostic monitoring to identify preferential near‐surface structures for CO2 degassing into the atmosphere: Tools for investigations at different spatial scales validated at a natural analogue site. International Journal of Greenhouse Gas Control18, 285–295.
    [Google Scholar]
  38. SchützeC., SauerU., BeyerK., LamertH., BräuerK., StrauchG.et al. 2012. Natural analogues: A potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environmental Earth Sciences67, 411–423.
    [Google Scholar]
  39. SpicákA. and HorálekJ.2001. Possible role of fluids in the process of earthquake swarm generation in the West Bohemia/Vogtland seismo‐active region. Tectonophysics336, 151–156.
    [Google Scholar]
  40. ŠpičákováA., UlčnyD. and KouldelkováG.2000. Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between Oligocene and Pliocene: A preliminary note. Studia Geophysica et Geodaetica44, 556–580.
    [Google Scholar]
  41. ThodeA.M., D’SpainG.L. and KupermanW.A.2000. Matched‐field processing, geoacoustic inversion, and source signature recovery of blue whale vocalizations. The Journal of the Acoustical Society of America107(3), 1286–1300.
    [Google Scholar]
  42. UlrychJ., DostalJ., AdamovičJ., JelínekE., ŠpačekP., HegnerE.et al. 2011. Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos123, 133–144.
    [Google Scholar]
  43. VandemeulebrouckJ., RouxP., GouédardP., LegazA., RevilA., HurstA.W.et al. 2010. Application of acoustic noise and self‐potential localization techniques to a buried hydrothermal vent (Waimangu Old Geyser site, New Zealand). Geophysical Journal International180, 883–890.
    [Google Scholar]
  44. VavryčukV.1993. Crustal anisotropy from local observations of shear‐wave splitting in West Bohemia, Czech Republic. Bulletin of the Seismological Society of America83, 1420–1441.
    [Google Scholar]
  45. WeinlichF.H., BräuerK., KämpfH., StrauchG., TesařJ. and WeiseS.M.1999. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochimica et Cosmochimica Acta63, 3653–3671.
    [Google Scholar]
  46. WeinlichF.H., StejskalV., TeschnerM. and PoggenburgJ.2013. Geodynamic processes in the NW Bohemian swarm earthquake region, Czech Republic, identified by continuous gas monitoring. Geofluids13, 305–330.
    [Google Scholar]
  47. WeinlichF.H.2014. Carbon dioxide controlled earthquake distribution pattern in the NW Bohemian swarm earthquake region, western Eger Rift, Czech Republic ‐ gas migration in the crystalline basement. Geofluids14, 143–159.
    [Google Scholar]
  48. WeiseS.M., BräuerK., KämpfH., StrauchG. and KochU.2001. Transport of mantle volatiles through the crust traced by seismically released fluids: A natural experiment in the earthquake swarm area Vogtland‐NW‐Bohemia, Central Europe. Tectonophysics336, 137–150.
    [Google Scholar]
  49. WyssM., ShimazakiK. and WiemerS.1997. Mapping active magma chambers by b values beneath the off‐Ito volcano, Japan. Journal of Geophysical Research: Solid Earth102(B9), 20413–20422, doi: 10.1029/97JB01074.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016024
Loading
/content/journals/10.3997/1873-0604.2016024
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error