1887
Volume 28, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Piggyback basins developed at the mountain fronts of collisional orogens can act as important, and transient, sediment stores along major river systems. It is not clear, however, how the storage and release of sediment in piggyback basins affects the sediment flux and evolution of downstream river reaches. Here, we investigate the timing and volumes of sediment storage and release in the Dehra Dun, a piggyback basin developed along the Himalayan mountain front in northwestern India. Based on OSL dating, we show evidence for three major phases of aggradation in the dun, bracketed at . 41–33 ka, 34–21 ka and 23–10 ka, each accompanied by progradation of sediment fans into the dun. Each of these phases was followed by backfilling and (apparently) rapid fan‐head incision, leading to abandonment of the depositional unit and a basinward shift of the active depocentre. Excavation of dun sediment after the second and third phases of aggradation produced time‐averaged sediment discharges that were . 1–2% of the modern suspended‐sediment discharges of the Ganga and Yamuna rivers that traverse the margins of the dun; this sediment was derived from catchment areas that together comprise 1.5% of the drainage area of these rivers. Comparison of the timing of dun storage and release with upstream and downstream records of incision and aggradation in the Ganga show that sediment storage in the dun generally coincides with periods of widespread hinterland aggradation but that late stages of dun aggradation, and especially times of dun sediment excavation, coincide with major periods of sediment export to the Ganga Basin. The dun thus acts to amplify temporal variations in hinterland sediment supply or transport capacity. This conceptual model appears to explain morphological features of other major river systems along the Himalayan front, including the Gandak and Kosi Rivers, and may be important for understanding sediment flux variations in other collisional mountain belts.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12116
2015-03-06
2024-04-25
Loading full text...

Full text loading...

References

  1. Abbas, N. & Subramanian, V. (1984) Erosion and sediment transport in the Ganges River basin (India). J. Hydrol., 69, 173–182.
    [Google Scholar]
  2. Allen, P.A. & Densmore, A.L. (2000) Sediment flux from an uplifting fault block. Basin Res., 12, 367–380.
    [Google Scholar]
  3. Barnes, J.B., Densmore, A.L., Mukul, M., Sinha, R., Jain, V. & Tandon, S.K. (2011) Interplay between faulting and base level in the development of Himalayan frontal fold topography. J. Geophys. Res. Earth Surf., 116, F03012, doi:10.1029/2010JF001841.
    [Google Scholar]
  4. Bloethe, J. & Korup, O. (2013) Millennial lag times in the Himalayan sediment routing system. Earth Planet. Sci. Lett., 382, 38–46.
    [Google Scholar]
  5. Blum, M.D. & Törnqvist, T.E. (2000) Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology, 47, 2–48.
    [Google Scholar]
  6. Bryant, M., Falk, P. & Paola, C. (1995) Experimental study of avulsion frequency and rate of deposition. Geology, 23, 365–368.
    [Google Scholar]
  7. Carretier, S. & Lucazeau, F. (2005) How does alluvial sedimentation at range fronts modify the erosional dynamics of mountain catchments?Basin Res., 17, 341–361.
    [Google Scholar]
  8. Castelltort, S. & van den Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sed. Geol., 157, 3–13.
    [Google Scholar]
  9. Chakraborty, T., Kar, R., Ghosh, P. & Basu, S. (2010) Kosi megafan: Historical records, geo‐ morphology and the recent avulsion of the Kosi River. Quatern. Int., 227, 143–160.
    [Google Scholar]
  10. Chakrapani, G.J. & Saini, R.K. (2009) Temporal and spatial variations in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India. J. Asian Earth Sci., 35, 545–553.
    [Google Scholar]
  11. Clarke, L., Quine, T.A. & Nicholas, A.P. (2010) An experimental investigation of autogenic behavior during alluvial fan evolution. Geomorphology, 115, 278–285.
    [Google Scholar]
  12. Clift, P. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241, 571–580.
    [Google Scholar]
  13. Davies, T. & Korup, O. (2007) Persistent alluvial fanhead trenching resulting from large, infrequent sediment inputs. Earth Surf. Proc. Land., 32, 725–742.
    [Google Scholar]
  14. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  15. DeCelles, P.G. & Horton, B.K. (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol. Soc. Am. Bull., 115, 58–77.
    [Google Scholar]
  16. DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Pivnik, D.A., Pequera, N. & Srivastava, P. (1991) Controls on synorogenic alluvial‐fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana. Sedimentology, 38, 567–590.
    [Google Scholar]
  17. Desai, C.G. (1982) The Kosi River: its Morphology and Mechanics in Retrospect and Prospect, vol. 1. Central Water Commission, Ministry of Irrigation, Government of India, New Delhi.
    [Google Scholar]
  18. Duehnforth, M., Densmore, A.L., Ivy‐Ochs, S. & Allen, P.A. (2008) Controls on sediment evacuation from glacially modified and unmodified catchments in the eastern Sierra Nevada, California. Earth Surf. Proc. Land., 33, 1602–1613.
    [Google Scholar]
  19. Dutta, S., Suresh, N. & Kumar, R. (2012) Climatically controlled Late Quaternary terrace staircase development in the fold‐ and thrust best of the Sub Himalaya. Palaeogeogr. Palaeoclimatol. Palaeoecol., 356–357, 16–26.
    [Google Scholar]
  20. Galy, A. & France‐Lanord, C. (2001) Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology, 29, 23–26.
    [Google Scholar]
  21. Galy, V., Francois, L., France‐Lanord, C., Faure, P., Kudrass, H., Palhol, F. & Singh, S.K. (2008) C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quatern. Sci. Rev., 27, 1396–1409.
    [Google Scholar]
  22. Garzanti, E., Vezzoli, G., Ando, S., Lave, J., Attal, M., France‐Lanord, C. & Decelles, P. (2007) Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth Planet. Sci. Lett., 258, 500–515.
    [Google Scholar]
  23. Gibling, M.R., Tandon, S.K., Sinha, R. & Jain, M. (2005) Discontinuity‐bounded alluvial sequences of the southern Gangetic plains, India: aggradation and degradation in response to monsoonal strength. J. Sediment. Res., 75, 373–389.
    [Google Scholar]
  24. Gibling, M.R., Fielding, C.R. & Sinha, R. (2011) Alluvial valleys and alluvial sequences: towards a geomorphic assessment. SEPM Spec. Publ., 97, 423–447.
    [Google Scholar]
  25. Gohain, K. & Parkash, B. (1990) Morphology of the Kosi Megafan. In: Alluvial Fans: A Field Approach (Ed. by A.H.Rackchoki & M.Church ), pp. 151–178. John Wiley and Sons Ltd, Chichester, UK.
    [Google Scholar]
  26. Goodbred, S. (2003) Response of the Ganges dispersal system to climate change: a source‐to‐sink view since the last interstade. Sed. Geol., 162, 83–104.
    [Google Scholar]
  27. Granet, M., Chabaux, F., France‐Lanord, C., Stille, P. & Pelt, E. (2007) Time‐scales of sedimentary transfer and weathering processes from U‐series nuclides: clues from the Himalayan rivers. Earth Planet. Sci. Lett., 261, 389–406.
    [Google Scholar]
  28. Granet, M., Chabaux, F., Stille, P., Dosseto, A., France‐Lanord, C. & Blaes, E. (2010) U‐series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: the case of the Himalayan rivers. Geochim. Cosmochim. Acta, 74, 2851–2865.
    [Google Scholar]
  29. Gupta, S. (1997) Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25, 11–14.
    [Google Scholar]
  30. Hilley, G.E. & Strecker, M.R. (2005) Processes of oscillatory basin filling and excavation in a tectonically active orogen: quebrada del Toro Basin, NW Argentina. Geol. Soc. Am. Bull., 117, 887–901.
    [Google Scholar]
  31. Jha, P.K., Subramanian, V. & Sitasawad, R. (1988) Chemical and sediment mass transfer in the Yamuna river‐ a tributary of the Ganges system. J. Hydrol., 104, 237–246.
    [Google Scholar]
  32. Juyal, N., Pant, R.K., Basavaiah, N., Bhushan, R., Jain, M., Saini, N.K., Yadava, M.G. & Singhvi, A.K. (2009) Reconstruction of Last Glacial to early Holocene monsoon variability from relict lake sediment of the Higher Central Himalaya, Uttarakhand, India. J. Asian Earth Sci., 34, 437–449.
    [Google Scholar]
  33. Kim, W. & Jerolmack, D.J. (2008) The pulse of calm fan deltas. J. Geol., 116, 315–330.
    [Google Scholar]
  34. Kim, W. & Muto, T. (2007) Autogenic response of alluvial‐bedrock transition to base level variation: experiment and theory. J. Geophys. Res. Earth Surf., 112, F03S14, doi:10.1029/2006JF000561.
    [Google Scholar]
  35. Kim, W., Paola, C., Swenson, J.B. & Voller, V.R. (2006) Shoreline response to autogenic processes of sediment storage and release in the fluvial system. J. Geophys. Res. Earth Surf., 111, F04013, doi:10.1029/2006JF000470.
    [Google Scholar]
  36. Kimura, K. (1995) Terraced debris and alluvium as indicators of the Quaternary structural development of the northwestern Chitwan Dun, central Nepal. Sci. Rep. Tohoku Univ. 7th Ser. (Geography), 45, 103–120.
    [Google Scholar]
  37. Kimura, K. (1999) Diachronous evolution of sub‐Himalayan piggyback basins, Nepal. Island Arc., 8, 99–113.
    [Google Scholar]
  38. Kumar, S., Wesnousky, S.G., Rockwell, T.K., Briggs, R.W., Thakur, V.C. & Jayangondaperumal, R. (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J. Geophys. Res. Solid Earth, 111, B03304. doi:10.1029/2004JB003309.
    [Google Scholar]
  39. Lancaster, S.T. & Casebeer, N.E. (2007) Sediment storage and evacuation in headwater valleys at the transition between debris‐flow and fluvial processes. Geology, 35, 1027–1030.
    [Google Scholar]
  40. Lane, S.N. & Richards, K.S. (1997) Linking river channel form and process: time, space, and causality revisited. Earth Surf. Proc. Land., 22, 249–260.
    [Google Scholar]
  41. Lavé, J. & Avouac, J.P. (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. Solid Earth, 105, 5735–5770.
    [Google Scholar]
  42. Lavé, J. & Avouac, J.P. (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res. Solid Earth, 106, 26561–26591.
    [Google Scholar]
  43. Leturmy, P., Mugnier, J.L., Vinour, P., Baby, P., Colletta, B. & Chabron, E. (2000) Piggyback basin development above a thin‐skinned thrust belt with two detachment levels as a function of interactions between tectonic and superficial mass transfer: the case of the Subandean Zone (Bolivia). Tectonophysics, 320, 45–67.
    [Google Scholar]
  44. Lupker, M., France‐Lanord, C., Galy, V., Lavé, J., Gaillardet, J., Gajurel, A.P., Guilmette, C., Rahman, M., Singh, S.K. & Sinha, R. (2012) Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochem. Cosmochem. Acta, 84, 410–432.
    [Google Scholar]
  45. Malmon, D.V., Reneau, S.L., Dunne, T., Katzman, D. & Drakos, P.G. (2005) Influence of sediment storage on downstream delivery of contaminated sediment. Water Resour. Res., 41, W05008. doi:10.1029/2004WR003288.
    [Google Scholar]
  46. Meade, R.H. (1982) Sources, sinks and storage of river sediment in the Atlantic drainage of the United States. J. Geol., 90, 235–252.
    [Google Scholar]
  47. Mohrig, D., Heller, P.L., Paola, C. & Lyons, W.J. (2000) Interpreting avulsion process from ancient alluvial sequences; Guadalope‐Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geol. Soc. Am. Bull., 112, 1787–1803. doi:10.1130/0016‐7606(2000)112 < 1787:IAPFAA>2.0.CO;2.
    [Google Scholar]
  48. Mugnier, J.L., Leturmy, P., Mascle, G., Huyghe, P., Chalaron, E., Vidal, G., Husson, L. & Delcaillau, B. (1999a) The Siwaliks of western Nepal: I. Geometry and kinematics. J. Asian Earth Sci., 17, 629–642.
    [Google Scholar]
  49. Mugnier, J.L., Leturmy, P., Huyghe, P. & Chalaron, E. (1999b) The Siwaliks of western Nepal II: mechanics of the thrust wedge. J. Asian Earth Sci., 17, 643–657.
    [Google Scholar]
  50. Mukhopadhyay, D.K. & Mishra, P. (2004) The Main Frontal Thrust (MFT), northwestern Himalayas: thrust trajectory and hanging wall fold geometry from balanced cross sections. J. Geol. Soc. India, 64, 739–746.
    [Google Scholar]
  51. Nakata, T. (1972) Geomorphic history and crustal movements of the foothills of the Himalayas. Sci. Rep. Tohoku Univ., 22, 39–177.
    [Google Scholar]
  52. Nakata, T. (1989) Active faults of the Himalaya of India and Nepal. In: Tectonics of the Western Himalayas (Ed. by L.L.Malinconico & R.J.Lillie ), Spec. Pap. Geol. Soc. Am., 232, 243–264.
    [Google Scholar]
  53. Nossin, J.J. (1971) Outline of the geomorphology of the Doon valley, northern U.P., India. Zeitschrift Geomorphol. N.F., 12, 18–50.
    [Google Scholar]
  54. Ori, G.G. & Friend, P.F. (1984) Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12, 475–478.
    [Google Scholar]
  55. Pandey, A.K., Pandey, P., Singh, G.D. & Juyal, N. (2014) Climate footprints in the Late Quaternary‐Holocene landforms of Dun Valley, NW Himalaya, India. Curr. Sci., 106, 245–253.
    [Google Scholar]
  56. Paola, C. (2000) Quantitative models of sedimentary basin filling. Sedimentology, 47, 121–178.
    [Google Scholar]
  57. Pepin, E., Carretier, S. & Herail, G. (2010) Erosion dynamics modelling in a coupled catchment‐fan system with constant external forcing. Geomorphology, 122, 78–90.
    [Google Scholar]
  58. Phillips, J.D. (1991) Fluvial sediment budgets in the North Carolina Piedmont. Geomorphology, 4, 231–241.
    [Google Scholar]
  59. Powell, E.J., Kim, W. & Muto, T. (2012) Varying discharge controls on timescales of autogenic storage and release processes in fluvio‐deltaic Environments: tank Experiments. J. Geophys. Res. Earth Surf., 117, F02011, doi:10.1029/2011JF002097.
    [Google Scholar]
  60. Powers, P.M., Lillie, R.J. & Yeats, R.S. (1998) Structure and shortening of the Kangra and Dehra Dun reentrants, Sub‐Himalaya, India. Geol. Soc. Am. Bull., 110, 1010–1027.
    [Google Scholar]
  61. Pratt, B., Burbank, D.W., Heimsath, A. & Ojha, T. (2002) Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalaya. Geology, 30, 911–914.
    [Google Scholar]
  62. Prell, W.L. & Kutzbach, J.E. (1987) Monsoon variability over the past 150,000 years. J. Geophys. Res. Solid Earth, 92, 8411–8425.
    [Google Scholar]
  63. Rahaman, W., Singh, S.K., Sinha, R. & Tandon, S.K. (2009) Climate control on erosion distribution over the Himalaya during the past ~100 ka. Geology, 37, 559–562.
    [Google Scholar]
  64. Raiverman, V. (1997) On dating of the Himalayan Thrusts. Himalayan Geol., 18, 63–79.
    [Google Scholar]
  65. Raiverman, V., Srivastava, A.K. & Prasad, D.N. (1993) On the foothill thrust of the Northwestern Himalaya. J. Himalayan Geol., 4, 237–256.
    [Google Scholar]
  66. Ray, Y. & Srivastava, P. (2010) Widespread aggradation in the mountainous catchment of the Alaknanda‐Ganga River System: timescales and implications to hinterland‐foreland relationships. Quatern. Sci. Rev., 29, 2238–2260.
    [Google Scholar]
  67. Reitz, M.D. & Jerolmack, D.J. (2012) Experimental alluvial fan evolution: channel dynamics, slope controls, and shoreline growth. J. Geophys. Res. Earth Surf., 117, F02021, doi:10.1029/2011JF002261.
    [Google Scholar]
  68. Roy, N.G., Sinha, R. & Gibling, M.R. (2012) Aggradation, incision, and interfluve flooding in the Ganga Valley over the past 100,000 years: testing the influence of monsoonal precipitation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 356–357, 38–53.
    [Google Scholar]
  69. Sapkota, S.N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y. & Tiwari, D. (2013) Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat. Geosci., 6, 71–76.
    [Google Scholar]
  70. Schelling, D. (1992) The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics, 11, 925–943.
    [Google Scholar]
  71. Scherler, D., Bookhagen, B. & Strecker, M.R. (2014) Tectonic control on 10Be‐derived erosion rates in the Garhwal Himalaya, India. J. Geophys. Res. Earth Surf., 119, 83–105.
    [Google Scholar]
  72. Sharma, M.C. & Owen, L.A. (1996) Quaternary glacial history of the Garhwal Himalaya, India. Quatern. Sci. Rev., 15, 335–365.
    [Google Scholar]
  73. Simpson, G. (2010) Influence of the mechanical behaviour of brittle‐ductile fold‐thrust belts on the development of foreland basins. Basin Res., 22, 139–156.
    [Google Scholar]
  74. Singh, A.K., Parkash, B., Mohindra, A., Thomas, J.V. & Singhvi, A.K. (2001) Quaternary alluvial fan sedimentation in the Dehradun Valley Piggyback Basin, NW Himalaya: tectonic and palaeoclimatic implications. Basin Res., 13, 449–471.
    [Google Scholar]
  75. Singh, S.K., Rai, S.K. & Krishnaswami, S. (2008) Sr and Nd isotopes in river sediments from the Ganga Basin: sediment provenance and spatial variability in physical erosion. J. Geophys. Res., 113, F03006. doi:10.1029/2007JF000909.
    [Google Scholar]
  76. Sinha, R. (2009) The Great avulsion of Kosi on 18 August 2008. Curr. Sci., 97, 429–433.
    [Google Scholar]
  77. Sinha, R. & Friend, P.F. (1994) River systems and their sediment flux, Indo‐Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825–845.
    [Google Scholar]
  78. Sinha, R. & Sarkar, S. (2009) Climate‐induced variability in the Late Pleistocene‐Holocene fluvial and fluvio‐deltaic successions in the Ganga plains, India. Geomorphology, 113, 173–188.
    [Google Scholar]
  79. Sinha, R., Jain, V., Prasad Babu, G. & Ghosh, S. (2005) Geomorphic characterization and diversity of the fluvial systems of the Gangetic Plains. Geomorphology, 70, 207–225.
    [Google Scholar]
  80. Sinha, R., Bhattacharjee, P., Sangode, S.J., Gibling, M.R., Tandon, S.K., Jain, M. & Godfrey, D. (2007) Valley and interfluve sediments in the southern Ganga plains, India: exploring facies and magnetic signatures. Sed. Geol., 201, 386–411.
    [Google Scholar]
  81. Sinha, S., Suresh, N., Kumar, R., Dutta, S. & Arora, B.R. (2010) Sedimentologic and geomorphic studies on the Quaternary alluvial fan and terrace deposits along the Ganga exit. Quatern. Int., 227, 87–103.
    [Google Scholar]
  82. Sinha, R., Gaurav, K., Chandra, S. & Tandon, S.K. (2013) Exploring the channel connectivity structure of the August 2008 avulsion belt of the Kosi River, India: application to flood risk assessment. Geology, 41, 1099–1102.
    [Google Scholar]
  83. Sinha, R., Ahmad, J., Gaurav, K. & Morin, G. (2014a) Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sed. Geol., 301, 133–149.
    [Google Scholar]
  84. Sinha, R., Sripriyanka, K., Jain, V. & Mukul, M. (2014b) Avulsion threshold and planform dynamics of the Kosi River in north Bihar (India) and Nepal. Geomorphology, 216, 157–170.
    [Google Scholar]
  85. Srivastava, P., Singh, I.B., Sharma, M. & Singhvi, A.K. (2003) Luminescence chronometry and Late Quaternary geomorphic history of the Ganga Plain, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., 197, 15–41.
    [Google Scholar]
  86. Srivastava, P., Tripathi, J.K., Islam, R. & Jaiswal, M.K. (2008) Fashion and phases of late Pleistocene aggradation and incision in the Alaknanda River Valley, western Himalaya, India. Quatern. Res., 70, 68–80.
    [Google Scholar]
  87. Tandon, S.K., Gibling, M.R., Sinha, R., Singh, V., Ghazanfari, P., Dasgupta, A., Jain, M. & Jain, V. (2006) Alluvial valleys of the Gangetic Plains, India: causes and timing of incision. Incised Valleys in Time and Space, SEPM Spec. Publ., 85, 15–35.
    [Google Scholar]
  88. Taylor, P.J. & Mitchell, A.W. (2000) The Quaternary glacial history of the Zanskar range, north‐west Indian Himalaya. Quatern. Int., 65, 81–99.
    [Google Scholar]
  89. Taylor, M. & Yin, A. (2009) Active structures of the Himalayan‐Tibetan orogeny and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5, 199–214.
    [Google Scholar]
  90. Thakur, V.C. (2013) Active tectonics of Himalayan Frontal Fault system. Int. J. Earth Sci. (Geol. Rundsch.), 102, 1791–1810.
    [Google Scholar]
  91. Thakur, V.C. & Pandey, A.K. (2004) Late Quaternary tectonic evolution of Dun in fault bend/propagated fold system, Garhwal Sub‐Himalaya. Curr. Sci., 87, 1567–1576.
    [Google Scholar]
  92. Thakur, V.C., Pandey, A.K. & Suresh, N. (2007) Late Quaternary‐Holocene evolution of Dun structure and the Himalayan Frontal Fault zone of the Garhwal Sub‐Himalaya, NW India. J. Asian Earth Sci., 29, 305–319.
    [Google Scholar]
  93. Vance, D., Bickle, M., Ivy‐ochs, S. & Kubik, P.W. (2003) Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth Planet. Sci. Lett., 206, 273–288.
    [Google Scholar]
  94. Walling, D.E. (1983) The sediment delivery problem. J. Hydrol., 65, 209–237.
    [Google Scholar]
  95. Wasson, R.J. (2003) A sediment budget for the Ganga‐Brahmaputra catchment. Curr. Sci., 84, 1041–1047.
    [Google Scholar]
  96. Wells, N.A. & Dorr, J.A.Jr (1987) Shifting of the Kosi River, northern India. Geology, 15, 204–207.
    [Google Scholar]
  97. Wesnousky, S.G., Kumar, S., Mohindra, R. & Thakur, V.C. (1999) Uplift and convergence along the Himalayan Frontal thrust of India. Tectonics, 18, 967–976.
    [Google Scholar]
  98. Wickert, A.D., Martin, J.M., Tal, M., Kim, W., Sheets, B. & Paola, C. (2013) River channel lateral mobility: metrics, time scales, and controls. J. Geophys. Res. Earth Surf., 118, 396–412.
    [Google Scholar]
  99. Yeats, R.S. & Lillie, R.J. (1991) Contemporary tectonics of the Himalayan frontal fault system: folds, blind thrusts and the 1905 Kangra earthquake. J. Structural Geol., 13, 215–225.
    [Google Scholar]
  100. Yeats, R.S., Nakata, T., Farah, A., Fort, M., Mirza, M.A., Pandey, M.R. & Stein, R.S. (1992) The Himalayan frontal fault system. Annales Tectonicae, Spec. Issue, Suppl. to Vol. VI, 85–98.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12116
Loading
/content/journals/10.1111/bre.12116
Loading

Data & Media loading...

Supplements

Optically stimulated luminescence dating: sampling and analytical details. IRSL signal for samples LD1039 to LD1042. Shine down curves (equivalent dose vs. stimulation time, left panels) and regenerated growth curves (test dose normalized luminescence intensity vs. laboratory beta dose, right panels) for equivalent dose determinations for samples LD1039 to LD1042, LD1147 and LD1148. Results of dose recovery test for sample LD1039.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error