1887
Volume 28, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Changes in sandstone and conglomerate maturity in tectonically active basins can be considered either as the product of climatic change or of tectonic restructuring of the feeder drainage system. Besides these regional controls, changes in the configuration of local sources can expressively affect basin fill composition. The Early Cretaceous fluvial successions of the Tucano Basin, a rift basin in northeastern Brazil related to the South Atlantic opening, contain one such case of abrupt change in maturity, marked by the passage from pebbly sandstone and conglomerate rich in quartz and quartzite fragments (Neocomian to Barremian São Sebastião Formation) to more feldspathic pebbly sandstone and conglomerate bearing pebbles of varied composition (Aptian Marizal Formation). Systematic analysis of stratigraphic and spatial variation in palaeocurrents and composition of pebbles and cobbles from both units, integrated with the recognition of fluvial and alluvial fan deposits distribution, revealed an abrupt decrease in maturity during the passage from the São Sebastião Formation to the Marizal Formation. This change is explained by exhumation of basement rocks and erosional removal of originally widespread Silurian to Jurassic sandstone and conglomerate units which were a major source of reworked vein quartz and quartzite pebbles to the São Sebastião Formation. Basin border faults activation during the deposition of the Marizal Formation caused adjacent basement uplift above the local erosional base level at the basin borders, whereas during the São Sebastião Formation deposition, the basin border fault scarps probably exposed mineralogically mature sedimentary units. The proposed model has important implications for interpreting changes in sediment maturity in rift basin successions, as similar results are expected where activation of basin border faults occurs after the erosional removal of older sedimentary or volcanic units that controlled syn‐rift successions composition.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12115
2015-03-26
2024-04-24
Loading full text...

Full text loading...

References

  1. A, M.N., Zhang, F.Q., Yang, S.F., Chen, H.L., Batt, G.E., Sun, M.D., Meng, Q.A., Zhu, D.F., CaoR.C. & LiJ.S. (2013) Early cretaceous provenance change in the southern hailar basin, northeastern China and its implication for basin evolution. Cretac. Res., 40, 21–42.
    [Google Scholar]
  2. Allen, P.A. & Heller, P.L. (2012) Dispersal and preservation of tectonically generated alluvial gravels in sedimentary basins. In: Tectonics of Sedimentary Basins, Recent Advances, First Edition (Ed. by C.Busby & A.Azor ), pp. 111–130. Blackwell Publishing Ltd, Oxford.
    [Google Scholar]
  3. Amaral, C.R.L. & Brito, P.M. (2012) A New Chanidae (Ostariophysii: Gonorynchiformes) from the Cretaceous of Brazil with Affinities to Laurasian Gonorynchiforms from Spain. PLoS One, 7(5), e37247.
    [Google Scholar]
  4. Arai, M. (2014) Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: a paleontological perspective. Brazi. J. Geol., 44(2), 339–350.
    [Google Scholar]
  5. Assine, M.L. (1992) Análise estratigráfica da Bacia do Araripe, Nordeste do Brasil. Rev. Bras. Geocienc., 22(3), 289–300.
    [Google Scholar]
  6. Assine, M.L. (1994) Paleocorrentes e paleogeografia na Bacia do Araripe, Nordeste do Brasil. Rev. Bras. Geocienc., 24, 223–232.
    [Google Scholar]
  7. Barbosa, J.S.F. & Sabaté, P. (2004) Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambr. Res., 133, 1–27.
    [Google Scholar]
  8. Bertotti, A.L., Chemale, F., Sylvester, P.J., Kayser, V.T. & Gruber, L. (2014) Changing provenance of Late Jurassic to Early Cretaceous rift‐related sedimentary rocks of the South Atlantic Margin: LA‐MC‐ICPMS U‐Pb and Lu–Hf isotopic study of detrital zircons from the Camamu Basin, Eastern Brazil. Chem. Geol., 363, 250–261.
    [Google Scholar]
  9. Boggs, S.Jr (1969) Relationship of size and composition in pebble counts. J. Sediment. Petrol., 39(3), 1243–1247.
    [Google Scholar]
  10. Braun, O.P.G. (1966) Estratigrafia dos sedimentos da parte inferior da região Nordeste do Brasil. Boletim. Divisão de Geologia e Mineralogia. Rio de Janeiro, 236, 1–76.
    [Google Scholar]
  11. Bueno, G.V. (2004) Diacronismo de eventos no rifte Sul‐Atlântico. Boletim de Geociências da Petrobras, 12, 203–229.
    [Google Scholar]
  12. Caputo, M.V. & Crowell, J.C. (1985) Migration of glacial centers across Gondwana during Paleozoic Era. Geol. Soc. Am. Bull., 96, 1020–1036.
    [Google Scholar]
  13. Chaboureau, A.C., Guillocheau, F., Robin, C., Rohais, S., Moulin, M. & Aslanian, D. (2013) Paleogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: paleotopographic and geodynamic implications. Tectonophysics, 604, 191–223.
    [Google Scholar]
  14. Costa, I.P., Milhomem, P.S., Bueno, G.V., Silva, H.S.R.L. & Kosin, M.D. (2007a) Sub‐bacias de Tucano Sul e Central. Boletim de Geociências da Petrobras, 15, 433–443.
    [Google Scholar]
  15. Costa, I.P., Bueno, G.V., Milhomem, P.S., Silva, H.S.R.L. & Kosin, M.D. (2007b) Sub‐bacias de Tucano Norte e Bacia de Jatobá. Boletim de Geociências da Petrobras, 15, 445–453.
    [Google Scholar]
  16. Critelli, S., Mongelli, G., Perri, F., Martin‐Algarra, A., Martin‐Martin, M., Perrone, V., Dominici, R., Sonnino, M. & Zaghloul, M.N. (2008) Sedimentary evolution of the middle Triassic – lower Jurassic continental redbeds from Western‐Central mediterranean alpine chains based on geochemical, mineralogical and petrographical tools. J. Geol., 116, 375–386.
    [Google Scholar]
  17. Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Provenance of Arenites (Ed. by G.G.Zuffa ), pp. 333–361. Reidel, Dordrecht.
    [Google Scholar]
  18. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull., 63, 2164–2182.
    [Google Scholar]
  19. Dürr, S.B. (1996) Provenance of Xigaze fore‐arc basin clastic rocks (Cretaceous, south Tibet). Geol. Soc. Am. Bull., 108, 669–684.
    [Google Scholar]
  20. Ferguson, R., Hoey, T., Wathen, S. & Werritty, A. (1996) Field evidence for rapid downstream fining of river gravels through selective transport. Geology, 24, 179–182.
    [Google Scholar]
  21. Figueiredo, F.T. (2013) Proveniência e Arquitetura de Depósitos Fluviais das Sub‐Bacias Tucano Norte e Central, Cretáceo (BA). Tese de doutorado, Universidade de São Paulo, Brasil, 161 pp.
    [Google Scholar]
  22. Freitas, B.T. (2014) A Formação Marizal (Aptiano) na Bacia do Tucano (BA): Contribuições à Análise da Arquitetura de Depósitos Fluviais e Implicações Paleobiogeográficas. Tese de doutorado, Universidade de São Paulo, Brasil, 175 pp.
    [Google Scholar]
  23. Gava, A., Nascimento, D.A. & Vidal, J.L.B. (1983) Levantamentos de recursos naturais, Projeto RADAM Brasil, folha SC 24/25, Aracaju‐Recife, Rio de Janeiro, v. 30.
  24. Ghignone, J.I. (1972) Ensaio de paleogeografia do Nordeste e as seqüências sedimentares. In: Congresso Brasileiro de Geologia, 26, Belém, 1972. Anais do Congresso, SBG Belém, pp. 21–28.
    [Google Scholar]
  25. Gontijo, G.A. (1988) Estudo de proveniência em arenitos da Bacia do Tucano, partes sul e central, Bahia. Dissertação de Mestrado, Universidade Federal de Ouro Preto.
  26. Grohmann, C.H. & Campanha, G.A.C. (2010) OpenStereo: open source, cross‐platform software for structural geology analysis. Presented at the AGU 2010 Fall Meeting, San Francisco, CA.
  27. Haughton, P.D.W., Todd, S.P. & Morton, A.C. (1991) Sedimentary provenance studies. In: Developments in Sedimentary Provenance Studies (Ed. by MortonA.C. , ToddS.P. & HaughtonP.D.W. ) Geol. Soc. Spec. Pub., 57, 1–11.
    [Google Scholar]
  28. Howard, J.L. (1993) The statistics of counting clasts in rudites: a review, with examples from the upper Palaeogene of southern California, USA. Sedimentology, 40(2), 157–174.
    [Google Scholar]
  29. Huismans, R.S. & Beaumont, C. (2008) Complex rifted continental margins explained by dynamical models of depth‐dependent lithospheric extension. Geology, 36, 163–166.
    [Google Scholar]
  30. Huismans, R.S. & Beaumont, C. (2011) Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473, 74–78.
    [Google Scholar]
  31. Ibbeken, H. & Schleyer, R. (1991) Source and Sediment – A Case Study of Provenance and Mass Balance at an Active Plate Margin (Calabria, Southern Italy). Springer‐Verlag, Berlin‐ Heidelberg.
    [Google Scholar]
  32. Japsen, P., Bonow, J.M., Green, P.F., Cobbold, P.R., Chiossi, D., Lilletveit, R., Magnavita, L.P. & Pedreira, A. (2012) Episodic burial and exhumation in NE Brazil after opening of the South Atlantic. Geol. Soc. Am. Bull., 124, 800–816.
    [Google Scholar]
  33. Johnsson, M.J. & Basu, A. (1993) Processes controlling the composition of clastic sediments. Geological Society of America Special Paper, 284, 342 pp.
  34. Karner, G.D. & Driscoll, N.W. (1999) Tectonic and stratigraphic development of the West African and eastern Brazilian margins; insights from quantitative basin modelling. In: The Oil and Gas Habitats of the South Atlantic (Ed. by CameronN.R. & ClureV.S. ) Geol. Soc. Lond. Spec. Publ., 153, 11–40.
    [Google Scholar]
  35. Karner, G.D., Driscoll, N.W. & Barker, D.H.N. (2003) Syn‐rift region subsidence across the West African continental margin; the role of lower plate ductile extension. In: Petroleum Geology of Africa: New Themes and Developing Technologies (Ed. by ArthurT.J. , MacGregorD.S. & CameronN.R. ) Geol. Soc. Lond. Spec. Publ., 207, 105–129.
    [Google Scholar]
  36. Kodama, Y. (1994) Downstream changes in the lithology and grain size of fluvial gravels, the Watarase River, Japan: evidence of the role of abrasion in downstream fining. J. Sediment. Res., 64, 68–75.
    [Google Scholar]
  37. Krynine, P.D. (1941) Differentiation of sediments the life history of a landmass [abs.]. Geol. Soc. Am. Bull., 52, 1915.
    [Google Scholar]
  38. Lentini, M.R., Fraser, S.I., Sumner, H.S. & Davies, R.J. (2010) Geodynamics of the central South Atlantic conjugate margins; implications for hydrocarbon potential. Petrol. Geosci., 16, 217–229.
    [Google Scholar]
  39. Lima, C.C.U. & Vilas Boas, G.S. (2000) A arquitetura deposicional da Formação Marizal (Cretáceo Inferior) na Bacia do Recôncavo, Bahia. Rev. Bras. Geocienc., 30, 729–736.
    [Google Scholar]
  40. Lovell, T.R. & Bowen, B.B. (2013) Fluctuations in Sedimentary Provenance of the Upper Cambrian Mount Simon Sandstone, Illinois Basin, United States. J. Geol., 121(2), 129–154.
    [Google Scholar]
  41. Magnavita, L.P. (1992) Geometry and kinematics of the Recôncavo‐Tucano‐Jatobá rift, NE Brazil. PhD Thesis, University of Oxford.
  42. Magnavita, L.P. (1996) Estruturas e Tectônica do Rift do Recôncavo‐Tucano‐Jatobá: Cap. XI, Texto Explicativo para o Mapa Geológico do Estado da Bahia. SGM, Salvador, pp. 239–259.
  43. Magnavita, L.P. & Cupertino, J.A. (1988) A new approach to the geological configuration of the Lower Cretaceous Tucano and Jatobá Basins. Rev. Bras. Geocienc., 18, 222–230.
    [Google Scholar]
  44. Magnavita, L.P., Davison, I. & Kusznir, N.J. (1994) Rifting, erosion, and uplift history of the Recôncavo‐Tucano‐Jatobá Rift, northeast Brazil. Tectonics, 13, 367–388.
    [Google Scholar]
  45. Magnavita, L.P., Destro, N., Carvalho, M.S.S., Milhomem, P.S. & Souza‐Lima, W. (2003) Bacias sedimentares brasileiras: Bacia de Tucano: Fundação Paleontológica Phoenix, Ano 5, Série Bacias Sedimentares, número 52.
  46. Martín‐Fernandez, J.A., Barceló‐Vidal, C. & Pawlowsky‐Glahn, V. (2003) Dealing with zeros and missing values in compositional datasets using nonparametric imputation. Math. Geol., 35, 253–278.
    [Google Scholar]
  47. Marton, L.G., Tari, L.G. & Lehmann, C.T. (2000) Evolution of the Angolan passive margin, West Africa, with emphasis on post‐salt structural styles. In: Atlantic Rifts and Continental Margins: American Geophysical Union (Ed. by MohriakW. & TalwaniM. ) Geophys. Monogr. Ser., 115, 129–149.
    [Google Scholar]
  48. Matos, R.M.D. (1992) The northeast Brazilian rift system. Tectonics, 11, 766–791.
    [Google Scholar]
  49. Matos, R.M.D. (1999) History of the Northeast Brazilian rift system; kinematic implications for the break‐up between Brazil and West Africa. In: The Oil and Gas Habitats of the South Atlantic (Ed. by CameronN.R. , BateR.H. & ClureV.S. ) Geol. Soc. Lond. Spec. Publ., 153, 55–73.
    [Google Scholar]
  50. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  51. Milani, E. & Davison, I. (1988) Basement control and transfer tectonics in the Recôncavo‐Tucano‐Jatobá rift, Northeast Brazil. Tectonophysics, 154, 41–70.
    [Google Scholar]
  52. Milani, E.J.
    , Rangel, H.D. , Bueno, G.V. , Stica, J.M. , Winter, W.R. , Caixeta, J.M. & Pessoa Neto, O.C. (Eds.) (2007) Bacias Sedimentares Brasileiras – Cartas Estratigráficas: Boletim de Geociências da Petrobras, Rio de Janeiro, v. 15.
  53. Morton, A.C. (1985) Heavy minerals in provenance studies. In: Provenance of Arenites (Ed. by G.G.Zuffa ), pp. 249–277. Reidel, Dordrecht.
    [Google Scholar]
  54. Morton, A.C., Todd, S.P. & Haughton, P.D.W. (1991) Developments in sedimentary provenance studies, Geological Society Society Special Publication no 57.
  55. Netto, A.S.T. & Oliveira, J.J. (1985) O preenchimento do rift‐valley na bacia do Recôncavo. Rev. Bras. Geocienc., 15, 287–292.
    [Google Scholar]
  56. Nilsen, T.H. (1969) Old red sedimentation in the buelandet‐vaerlandet devonian district, western norway. Sed. Geol., 3(1), 35–57.
    [Google Scholar]
  57. Nilsen, O., Hagen, E. & Dypvik, H. (2001) Sediment provenance and Karoo rift basin evolution in the Kilombero rift valley, Tanzania. S. Afr. J. Geol., 104(2), 137–150.
    [Google Scholar]
  58. Ochoa, M., Arribas, M.E. & Arribas, J.M.R. (2007) Significance of geochemical signatures on provenance in intracratonic rift basins: examples from the Iberian plate. Geol. Soc. Am. Spec. Pap., 420, 199–219.
    [Google Scholar]
  59. Olivarius, M., Rasmussen, E.S., Siersma, V., Knudsen, C., Kokfelt, T.F. & Keulen, N. (2014) Provenance signal variations caused by facies and tectonics: Zircon age and heavy mineral evidence from Miocene sand in the north‐eastern North Sea Basin. Mar. Pet. Geol., 49, 1–14.
    [Google Scholar]
  60. Palarea‐Albaladejo, J., Martín‐Fernandez, J.A. & Gomes‐Garcia, J. (2007) An parametric approach for dealing with compositional rounded zeros. Math. Geol., 39, 625–645.
    [Google Scholar]
  61. Pawlowsky‐Glahn, V. & Egozcue, J.J. (2006) Compositional data and their analysis: an introduction. Geol. Soc. Lond. Spec. Publ., 264, 1–10.
    [Google Scholar]
  62. Pell, S.D., Williams, I.S. & Chivas, A.R. (1997) The use of protolith zircon‐age fingerprints in determining the protosource areas for some Australian dune sands. Sed. Geol., 109, 233–260.
    [Google Scholar]
  63. Perri, F., Critelli, S., Mongelli, G. & Cullers, R.L. (2011) Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic Monte di Gioiosa mudstones (Sicily, southern Italy). Int. J. Earth Sci., 100, 1569–1587.
    [Google Scholar]
  64. Perri, F., Critelli, S., Martin‐Algarra, A., Martin‐Martin, M., Perrone, V., Mongelli, G. & Zattin, M. (2013) Triassic redbeds in the Malaguide Complex (Betic Cordillera – Spain): petrography, geochemistry and geodynamic implications. Earth‐Sci. Rev., 117, 1–28.
    [Google Scholar]
  65. Prosser, S.. (1993) Rift‐related linked depositional systems and their seismic expression. Geol. Soc. Lond. Spec. Publ., 71, 35–66.
    [Google Scholar]
  66. Rolim, J.L. & Mabessone, J.M. (1982) Um modelo de grande rio para as bacias rift do Recôncavo‐Tucano‐Jatobá (Purbeckiano‐Aptiano, Nordeste do Brasil). In: Congresso Brasileiro de Geologia 32, Salvador, 1982. Anais de congresso Salvador, SBG, v.4, 1406–1412.
    [Google Scholar]
  67. Sánchez Martínez, S., De La Horra, R., Arenas, R., Gerdes, A., Galán‐Abellán, A.B. & López‐Gómez, J. (2012) U‐Pb Ages of Detrital Zircons from the Permo‐Triassic Series of the Iberian Ranges: a Record of Variable Provenance during Rift Propagation. J. Geol., 120 (2), 135–154.
    [Google Scholar]
  68. Santos, R., Souza, J., Teixeira, L. & Pedreira, A. (1988a) Programa Levantamentos Geológicos Básicos do Brasil; carta geológica, carta metalogenética/previsional – Escala 1:100.000 (Folha SC.24‐X‐C‐V Santa Brígida) Estados da Bahia e Sergipe, Textos e mapas Esc. 100000. DNPM/CPRM, Brasília.
  69. Santos, R.A., Menezes Filho, N.R. & Souza, J.D. (Orgs.) (1988b) Programa Levantamentos Geológicos Básicos do Brasil; carta geológica, carta metalogenética/previsional – Escala 1:100.000 (Folha SC.24‐Z‐A‐III Carira) Estado da Bahia. DNPM/CPRM, Brasília, 124 pp.
  70. Santos, C.C., Reis, C. & Pedreira, A.J. (2010) Bacia sedimentar do Tucano Central. In: Projeto Bacia do Tucano Central. Estados da Bahia e Sergipe. Escala: 1:100000 (Ed. by C.C.Santos , C.Reis & A.J.Pedreira ), pp. 28–54. CPRM, Salvador.
    [Google Scholar]
  71. Silva, O.B., Caixeta, J.M., Milhomem, P.S. & Kosin, M.D. (2007) Bacia do Recôncavo. Boletim de Geociências da Petrobras, 15, 423–431.
    [Google Scholar]
  72. Sircombe, K.N. (1999) Tracing provenance through the isotope ages of littoral and sedimentary detrital zircons, Eastern Australia. Sed. Geol., 124, 47–67.
    [Google Scholar]
  73. Ussami, N., Karner, G.D. & Bott, M.H.P. (1986) Crustal detachment during South Atlantic rifting and formation of Tucano‐Gabon basin system. Nature, 322, 629–632.
    [Google Scholar]
  74. Weltje, G.J. & Von Eynatten, H. (2004) Quantitative provenance analysis of sediments: review and outlook. Sed. Geol., 171, 1–11.
    [Google Scholar]
  75. Wernicke, B.P. (1985) Uniform‐sense normal simple shear of the continental lithosphere. Can. J. Earth Sci., 22, 108–125.
    [Google Scholar]
  76. Whittaker, A.C., Attal, M. & Allen, P.A. (2010) Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Res., 22, 809–828.
    [Google Scholar]
  77. Zacca, P. (2013) 40Ar‐39Ar em Overgrowths de Feldspatos Potássicos e U‐Pb em Zircão – Aplicação Conjunta Para o Entendimento da Formação Marizal – Bacia do Recôncavo. Dissertação de Mestrado, Instituto de Geociências da Universidade Federal do Rio Grande do Sul, 69 pp.
  78. Zaghloul, M.N., Critelli, S., Mongelli, G., Perri, F., Perrone, V., Tucker, M., Aiello, M., Sonnino, M. & Ventimiglia, C. (2010) Depositional systems, composition and geochemistry of Triassic rifted‐continental margin redbeds of Internal Rif Chain, Morocco. Sedimentology, 57, 312–350.
    [Google Scholar]
  79. Zhang, Y., Pe‐Piper, G. & Piper, D.J.W. (2014) Sediment geochemistry as a provenance indicator: unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology, 61(2), 383–410.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12115
Loading
/content/journals/10.1111/bre.12115
Loading

Data & Media loading...

Supplements

Field data – Clast area calculations.

PDF

Field data – Clast composition.

PDF

Description of method applied for counting and analyzing pebble compositional data.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error