1887

Abstract

Large-scale storage of CO2 in saline aquifers is considered an essential technology to mitigate CO2 emissions. Storage potential has mainly been estimated based on volumetrics or detailed simulations for specific injection scenarios. In practice, achievable storage capacity will depend on engineering, economical, and political restrictions and be limited by the length of the injection period, costs associated with potential CO2 leakage, pressure management, etc. We show how achievable storage volumes can be estimated and maximized using adjoint-based optimization and a hierarchy of simulation methods. In particular, vertical equilibrium models provide the simplest possible description of the flow dynamics during the injection and early post-injection period, while percolation type methods provide effective means for forecasting the long-term fate of CO2 during the later migration stages. We investigate the storage volumes that can be achieved for several formations found along the Norwegian Continental Shelf by optimizing well placement and injection rates, using production wells for pressure management when necessary. Optimal strategies are obtained under various objectives and simple but realistic constraints, namely: penalization of CO2 leakage, minimization of well cost, and restriction of pressure buildup.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201601823
2016-08-29
2024-04-26
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201601823
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error