1887
Volume 65 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman‐filter‐based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time‐lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state–parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil–gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%–40% better than those from the joint estimation scheme, but require about a 30% increase in computational cost.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12371
2016-08-25
2024-04-26
Loading full text...

Full text loading...

References

  1. AanonsenS., NaevdalG., OliverD., ReynoldsA. and VallesB.2009. The ensemble Kalman filter in reservoir engineering – a review. SPE Journal14(03), 393–412.
    [Google Scholar]
  2. Abdel‐AalH., AggourM. and FahimM.2003. Petroleum and Gas Field Processing. CRC Press.
    [Google Scholar]
  3. AhrW.2011. Geology of Carbonate Reservoirs: The Identification, Description and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks. John Wiley & Sons.
    [Google Scholar]
  4. Al‐QahtaniM. and ZillurR.2001. A mathematical algorithm for modeling geomechanical rock properties of the Khuff and pre‐Khuff reservoirs in Ghawar field. In: SPE Middle East Oil and Gas Show, Manama, Bahrain. Society of Petroleum Engineers.
    [Google Scholar]
  5. AndersonJ.2009. Ensemble Kalman filters for large geophysical applications. IEEE Control Systems29(3), 66–82.
    [Google Scholar]
  6. BakanS., ChlondA., CubaschU., FeichterJ., GrafH., GrasslH.et al. 1991. Climate response to smoke from the burning oil wells in Kuwait. Nature351, 367–371.
    [Google Scholar]
  7. ChasseriauP. and ChouteauM.2003. 3D gravity inversion using a model of parameter covariance. Journal of Applied Geophysics52(1), 59–74.
    [Google Scholar]
  8. ChenY. and OliverD.2010. Cross‐covariances and localization for EnKF in multiphase flow data assimilation. Computational Geosciences14(4), 579–601.
    [Google Scholar]
  9. ChenZ.2007. Reservoir Simulation: Mathematical Techniques in Oil Recovery. SIAM.
    [Google Scholar]
  10. ChilesJ.‐P. and DelfinerP.2012. Geostatistics: Modeling Spatial Uncertainty. Wiley.
    [Google Scholar]
  11. CuencaM., HooperA. and HanssenR.2013. Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. Journal of Applied Geophysics88, 1–11.
    [Google Scholar]
  12. DakeL.1983. Fundamentals of Reservoir Engineering. Elsevier Science.
    [Google Scholar]
  13. DaneshA.1998. PVT and Phase Behaviour Of Petroleum Reservoir Fluids. Elsevier.
    [Google Scholar]
  14. DresserA.1982. Well Logging and Interpretation Techniques. Dresser Industries Inc.
    [Google Scholar]
  15. DuJ., McColpinG., DavisE. and MarsicS.2010. Model uncertainties and resolution studies with application to subsurface movement of a CO2 injection project in the Krechba field using InSAR data. Journal of Canadian Petroleum Technology49(6), 31–37.
    [Google Scholar]
  16. EikenO., StenvoldT., ZumbergeM., AlnesH. and SasagawaG.2008. Gravimetric monitoring of gas production from the Troll field. Geophysics73(6), 149–154.
    [Google Scholar]
  17. El GharamtiM., HoteitI. and ValstarJ.2013. Dual states estimation of a subsurface flow‐transport coupled model using ensemble Kalman filtering. Advances in Water Resources60, 75–88.
    [Google Scholar]
  18. El‐GharamtiM., KadouraA., ValstarJ., SunS. and HoteitI.2014. Constraining a compositional flow model with flow‐chemical data using an ensemble‐based Kalman filter. Water Resources Research50(3), 2444–2467.
    [Google Scholar]
  19. El‐GharamtiM., Ait‐El‐FquihB. and HoteitI.2015. An iterative ensemble Kalman filter with one‐step‐ahead smoothing for state‐parameters estimation of contaminant transport models. Journal of Hydrology527, 442–457.
    [Google Scholar]
  20. FergusonJ., ChenT., BradyJ., AikenC. and SeibertJ.2007. The 4D microgravity method for waterflood surveillance: Part II—Gravity measurements for the Prudhoe Bay reservoir, Alaska. Geophysics72(2), 33–43.
    [Google Scholar]
  21. FluryJ. and RummelR.2005. Future Satellite Gravimetry and Earth Dynamics. Springer.
    [Google Scholar]
  22. FokkerP.2014. Using PS‐InSAR in reservoir characterization of the Bergermeer gas field. KAUST‐KACST‐JCCP Workshop, Thuwal, Saudi Arabia.
    [Google Scholar]
  23. GeertsmaJ.1973. Land subsidence above compacting oil and gas reservoirs. Journal of Petroleum Technology25(6), 734–744.
    [Google Scholar]
  24. GlegolaM., DitmarP., HaneaR., EikenO., VossepoelF., ArtsR.et al. 2012a. History matching time‐lapse surface‐gravity and well‐pressure data with ensemble smoother for estimating gasfield aquifer support — A 3D numerical study. SPE Journal17(4), 966–980.
    [Google Scholar]
  25. GlegolaM., DitmarP., HaneaR., VossepoelF., ArtsR. and KleesR.2012b. Gravimetric monitoring of water influx into a gas reservoir: a numerical study based on the ensemble Kalman filter. SPE Journal17(1), 163–176.
    [Google Scholar]
  26. GlegolaM., DitmarP., VossepoelF., ArtsR., Al‐KindyF. and KleesR.2015. Gravimetric monitoring of the first field‐wide steam injection in a fractured carbonate field in Oman – a feasibility study. Geophysical Prospecting63(5), 1256–1271.
    [Google Scholar]
  27. GosselinO., AanonsenS., AavatsmarkI., CominelliA., GonardR., KolasinskiM.et al. 2003. History matching using time‐lapse seismic (HUTS). In: SPE Annual Technical Conference and Exhibition, Denver, USA. Society of Petroleum Engineers.
    [Google Scholar]
  28. HareJ., FergusonJ., AikenC. and BradyJ.1999. The 4‐D microgravity method for waterflood surveillance: a model study for the Prudhoe Bay reservoir, Alaska. Geophysics64(1), 78–87.
    [Google Scholar]
  29. HareJ., FergusonJ. and BradyJ.2008. The 4D microgravity method for waterflood surveillance: Part IV — Modeling and interpretation of early epoch 4D gravity surveys at Prudhoe Bay, Alaska. Geophysics73(6).
    [Google Scholar]
  30. Hendricks FranssenH.‐J. and KinzelbachW.2008. Real‐time groundwater flow modelling with the ensemble Kalman filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9).
    [Google Scholar]
  31. HoteitI., LuoX. and PhamD.‐T.2012. Particle Kalman filtering: a nonlinear Bayesian framework for ensemble Kalman filters. Monthly Weather Review140(2), 528–542.
    [Google Scholar]
  32. KatterbauerK., HoteitI. and SunS.2014a. Data assimilation of InSAR measurements for large scale reservoirs. In: Annual Technical Symposium and Exhibition, Al‐Khobar, Saudi Arabia.
    [Google Scholar]
  33. KatterbauerK., HoteitI. and SunS.2014b. EMSE: Synergizing EM and seismic data attributes for enhanced forecasts of reservoirs. Journal of Petroleum Science and Engineering122, 396–410.
    [Google Scholar]
  34. KatterbauerK., HoteitI. and SunS.2015. History matching of electromagnetically heated reservoirs incorporating full‐wavefield seismic and electromagnetic imaging. SPE Journal, SPE‐173896‐PA.
    [Google Scholar]
  35. KaulS., AmbasthaA., EmeV. and CreekJ.2013. Insights from history matching and forecasting work for a steeply‐dipping, faulted volatile oil reservoir. SPE Annual Technical Conference and Exhibition, New Orleans, USA.
  36. LakeL.2007. Petroleum Engineering Handbook. Society of Petroleum Engineers.
    [Google Scholar]
  37. LecampionB., CooksleyG., LoizzoM., ArnaudA., RoblesJ., ZhangZ.et al. 2011. Inversion of time‐lapse InSAR data for reservoir pressure monitoring: example of the Krechba Field, Algeria. In: SPE EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum Engineers
    [Google Scholar]
  38. LeeA., GonzalezM. and EakinB.1966. The viscosity of natural gases. Journal of Petroleum Technology18(8), 997–1000.
    [Google Scholar]
  39. LieK.‐A., KrogstadS. and LigaardenI.2012. Open‐source MATLAB implementation of consistent discretisations on complex grids. Computational Geosciences16(2), 297–322.
    [Google Scholar]
  40. LiuG., YanH., MengX. and ChenZ.2014. An extension of gravity probability tomography imaging. Journal of Applied Geophysics102, 62–67.
    [Google Scholar]
  41. LiuN. and OliverD.2005. Ensemble Kalman filter for automatic history matching of geologic facies. Journal of Petroleum Science and Engineering47(3), 147–161.
    [Google Scholar]
  42. LumleyD.2010. 4D seismic monitoring of CO2 sequestration. The Leading Edge29(2), 150–155.
    [Google Scholar]
  43. LuoX. and HoteitI.2011. Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter. Monthly Weather Review139(12), 3938–3953.
    [Google Scholar]
  44. MandelJ.2006. Efficient Implementation of the Ensemble Kalman Filter. CCAM, University of Colorado.
    [Google Scholar]
  45. MoradkhaniH., SorooshianS., GuptaH. and HouserP.2005. Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Advances in Water Resources28(2), 135–147.
    [Google Scholar]
  46. NagyD.1966. The gravitational attraction of a right rectangular prism. Geophysics31(2), 362–371.
    [Google Scholar]
  47. NairnA. and Al‐SharhanA.1997. Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier.
    [Google Scholar]
  48. OliverD. and ChenY.2010. Recent progress on reservoir history matching: a review. Computational Geosciences15(1), 185–221.
    [Google Scholar]
  49. ParkG., OhS., LeeH., KimJ. and KwonB.2011. Geostatistical integration of gravity and magnetotelluric data to enhance resolution of geologic structure. Journal of Applied Geophysics73(3), 232–242.
    [Google Scholar]
  50. PedersenK., ChristensenP. and AzeemS.2006. Phase Behavior of Petroleum Reservoir Fluids. CRC Press.
    [Google Scholar]
  51. PowersR., RamirezL., RedmondC. and ElbergE.1966. Geology of the Arabian Peninsula ‐ Sedimentary Geology of Saudi Arabia. US Geological Survey.
    [Google Scholar]
  52. PrattW. and JohnsonD.1926. Local subsidence of the Goose Creek oil field. The Journal of Geology34(7), 577–590.
    [Google Scholar]
  53. RenardB., KavetskiD., KuczeraG., ThyerM. and FranksS.2010. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resources Research46(5).
    [Google Scholar]
  54. RoccaF., RucciA., FerrettiA. and BohaneA.2013. Advanced InSAR interferometry for reservoir monitoring. First Break31(5).
    [Google Scholar]
  55. RohS., GentonM., JunM., SzunyoghI. and HoteitI.2013. Observation quality control with a robust ensemble Kalman filter. Monthly Weather Review141(12), 4414–4428.
    [Google Scholar]
  56. SamuelJ., CoulibalyP., DumedahG. and MoradkhaniH.2014. Assessing model state and forecasts variation in hydrologic data assimilation. Journal of Hydrology513, 127–141.
    [Google Scholar]
  57. Schlumberger
    Schlumberger2014. ECLIPSE Reservoir Simulator.
    [Google Scholar]
  58. SelleyR. and SonnenbergS.2014. Elements of Petroleum Geology. Academic Press.
    [Google Scholar]
  59. SkjervheimJ., EvensenG., AanonsenS., RuudB. and JohansenT.2014. Incorporating 4D seismic data in reservoir simulation models using ensemble Kalman filter. SPE Journal12(3), 282–292.
    [Google Scholar]
  60. StenvoldT.2008. Offshore Gravimetric and Subsidence Monitoring. Norwegian University of Science and Technology.
    [Google Scholar]
  61. TalwaniM.1973. Computer usage in the computation of gravity anomalies. Geophysics38, 343–389.
    [Google Scholar]
  62. TamburiniA., Del ConteS., FerrettiA., CespaS. and RucciA.2013. Advanced InSAR technology for reservoir monitoring and reservoir geomechanical model calibration. In: Kuwait Oil and Gas Show and Conference, Kuwait.
    [Google Scholar]
  63. ThulinK., AanonsenS. and ReynoldsA.2007. Estimation of initial fluid contacts by assimilation of production data with EnKF. In: SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA.
    [Google Scholar]
  64. TraniM., ArtsR. and LeeuwenburghO.2012. Seismic history matching of fluid fronts using the ensemble Kalman filter. SPE Journal18(1), 159–171.
    [Google Scholar]
  65. Van GelderenM., HaagmansR. and BilkerM.1999. Gravity changes and natural gas extraction in Groningen. Geophysical Prospecting47(6), 979–993.
    [Google Scholar]
  66. VascoD., FerrettiA. and NovaliF.2008. Reservoir monitoring and characterization using satellite geodetic data: Interferometric synthetic aperture radar observations from the Krechba field, Algeria. Geophysics73(6), 113–122.
    [Google Scholar]
  67. WangR. and KuempelH.2003. Poroelasticity: efficient modeling of strongly coupled, slow deformation processes in a multilayered half‐space. Geophysics68(2), 705–717.
    [Google Scholar]
  68. WangY., LiG. and ReynoldsA.2010. Estimation of depths of fluid contacts by history matching using iterative ensemble Kalman smoothers. SPE Journal15(2), 509–525.
    [Google Scholar]
  69. WenX.‐H. and ChenW.2007. Some practical issues on real‐time reservoir model updating using ensemble Kalman filter. SPE Journal12(2), 156–166.
    [Google Scholar]
  70. ZafariM. and ReynoldsA.2005. Assessing the uncertainty in reservoir description and performance predictions with the ensemble Kalman filter. In: SPE Annual Technical Conference and Exhibition, Dallas, TX, USA.
    [Google Scholar]
  71. ZumbergeM., SasagawaG., AlnesH., EikenO. and StenvoldT.2012. Time‐lapse seafloor gravity and height measurements for reservoir monitoring. In: Offshore Technology Conference, Houston, TX, USA.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12371
Loading
/content/journals/10.1111/1365-2478.12371
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error