1887
Volume 14 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Spectral induced polarisation data are usually interpreted with simple models in order to derive petrophysical relationships between electrical and sedimentological properties, such as texture, clay content, and permeability. The aim of this work is to explore the value of spectral induced polarisation in addition to conventional direct‐current resistivity measurements for determining textural properties of saturated samples collected from alluvial deposits. For this, an advanced data processing approach that combines cluster and principal component analysis was developed and applied to integral parameters derived from Debye decomposition of spectral induced polarisation data. This data processing procedure allowed identifying groups of samples with a similar spectral induced polarisation response and to derive a characteristic grain‐size distribution for each group of samples. The method to estimate the grain‐size distribution from spectral induced polarisation data was successfully validated using independent sediment samples. The remaining uncertainty in the estimation of sediment texture from spectral induced polarisation data was attributed to the effect of pore size distribution and mineralogy, which were not considered in the present work but can be added in the future within the same conceptual workflow.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016033
2016-06-01
2024-03-28
Loading full text...

Full text loading...

References

  1. Abdel AalG.Z., AtekwanaE.A., RossbachS. and WerkemaD.D.2010. Sensitivity of geoelectrical measurements to the presence of bacteria in porous media. Journal of Geophysical Research115, G03017.
    [Google Scholar]
  2. BairleinK., HördtA. and NordsiekS.2014. The influence on sample preparation on spectral induced polarization of unconsolidated sediments. Near Surface Geophysics12(5), 667–677.
    [Google Scholar]
  3. BoaduF.K. and SeabrookB.C.2006. Effects of clay content and salinity on the spectral electrical response of soils. Journal of Environmental and Engineering Geophysics11(3), 161–170.
    [Google Scholar]
  4. BreedeK., KemnaA., EsserO., ZimmermannE., VereeckenH. and HuismanJ.A.2012. Spectral induced polarisation measurements on variably saturated sand–clay mixtures. Near Surface Geophysics10(6), 479–489.
    [Google Scholar]
  5. CassianiG., KemnaA., VillaA. and ZimmermannE.2009. Spectral induced polarization for the characterization of free‐phase hydrocarbon contamination of sediments with low clay content. Near Surface Geophysics7(5–6), 547–562.
    [Google Scholar]
  6. ColeK.S. and ColeR.H.1941. Dispersion and absorption in dielectrics I. alternating current characteristics. The Journal of Chemical Physics9, 341–351.
    [Google Scholar]
  7. DavisJ.C.1973. Statistics and Data Analysis in Geology.John Wiley & Sons. ISBN 0‐471‐83743‐1.
    [Google Scholar]
  8. de LimaO.A.L., ClennelM.B., NeryG.G. and NiwasS.2005. A volumetric approach for the resistivity response of freshwater shaly sandstones. Geophysics70(1), F1–F10.
    [Google Scholar]
  9. de LimaO.A.L. and NiwasS.2000. Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. Journal of Hydrology235(1–2), 12–26.
    [Google Scholar]
  10. de LimaO.A.L. and SharmaM.M.1990. A grain conductivity approach to shaly sandstones. Geophysics55(10), 1347–1356.
    [Google Scholar]
  11. FlorschN., CamerlynckC. and RevilA.2012. Direct etimation of the distribution of relaxation times from induced‐polarization spectra using a Fourier transform analysis. Near Surface Geophysics10(6), 517–531.
    [Google Scholar]
  12. FlorschN., RevilA. and CamerlynckC.2014. Inversion of generalized relaxation time distributions with optimized damping parameter. Journal of Applied Geophysics109, 119–132.
    [Google Scholar]
  13. GhorbaniA., CosenzaP., RevilA., ZamoraM., SchmutzM., FlorschN. et al. 2009. Non‐invasive monitoring of water content and textural changes in clay‐rocks using spectral induced polarization: a laboratory investigation. Applied Clay Science43(3–4), 493–502.
    [Google Scholar]
  14. GomaaM.M.2009. Saturation effect on electrical properties of hematitic sandstone in the audio frequency range using non‐polarizing electrodes. Geophysical Prospecting57(6), 1091–1100.
    [Google Scholar]
  15. GrunatD.A., SlaterL.D. and WehrerM.2013. Complex electrical measurements on an undisturbed soil core: Evidence for improved estimation of saturation degree from imaginary conductivity. Vadose Zone Journal12(4).
    [Google Scholar]
  16. HördtA. and MildeS.2012. Studies with gel‐filled sandstone samples with implications for the origin of induced polarization. Near Surface Geophysics10(6), 469–478.
    [Google Scholar]
  17. HuismanJ.A., ZimmermannE., HaegelF.H., TreichelA. and VereeckenH.2016. Evaluation of a correction procedure to remove electrode contact impedance effects from broadband SIP measurements. Journal of Applied Geophysics [Online].
    [Google Scholar]
  18. InzoliS.2016. Experimental and statistical methods to improve the reliability of spectral induced polarization to infer litho‐textural properties of alluvial sediments. PhD Thesis, Università degli Studi di Milano, Italy.
    [Google Scholar]
  19. InzoliS. and GiudiciM.2015. A comparison between single‐ and multi‐objective optimization to fit spectral induced polarization data from laboratory measurements on alluvial sediments. Journal of Applied Geophysics122, 149–158.
    [Google Scholar]
  20. InzoliS., GiudiciM., MeleM. and RondoliniE.2014. Complex electrical properties of sand–clay mixtures and alluvial sediment samples. Near Surface Geoscience 2014: 20th European Meeting of Environmental and Engineering Geophysics, Athens, Greece, Extended Abstract.
    [Google Scholar]
  21. JougnotD., GhorbaniA., RevilA., LeroyP. and CosenzaP.2010. Spectral induced polarization of partially saturated clay‐rocks: a mechanistic approach. Geophysical Journal International180(1), 210–224.
    [Google Scholar]
  22. JoyceR.A., GlaserD.R.II, WerkemaD.D.Jr. and AtekwanaE.A.2012. Spectral induced polarization response to nanoparticles in a saturated sand matrix. Journal of Applied Geophysics77, 63–71.
    [Google Scholar]
  23. KaufmanL. and RousseeuwP. J.2005. Finding Groups in Data: An Introduction to Cluster Analysis.John Wiley & Sons, Hoboken, NJ, USA. ISBN 978‐0471735786.
    [Google Scholar]
  24. KavianM., SlobE.C. and MulderW.A.2012a. Measured electric responses of unconsolidated layered and brine‐saturated sand and sand—clay packs under continuous fluid flow conditions. Journal of Applied Geophysics80, 83–90.
    [Google Scholar]
  25. KavianM., SlobE.C. and MulderW.A.2012b. A new empirical complex electrical resistivity model. Geophysics77(3), E185–E191.
    [Google Scholar]
  26. KeeryJ., BinleyA., ElshenawyA. and CliffordJ.2012. Markov‐chain Monte Carlo estimation of distributed Debye relaxations in spectral induced polarization. Geophysics77(2), E159–E170.
    [Google Scholar]
  27. KellerG.V. and FrischknechtF.C.1966. Electrical Meth0ds in Geophysical Prospecting.Pergamon Press.
    [Google Scholar]
  28. KelterM., HuismanJ.A., ZimmermannE., KemnaA., and VereeckenH.2015. Quantitative imaging of spectral electrical properties of variably saturated soil columns. Journal of Applied Geophysics123, 333–344.
    [Google Scholar]
  29. KemnaA., BinleyA., CassianiG., NiederleithingerE., RevilA., SlaterL., WilliamsK.H. et al. 2012. An overview of the spectral induced polarization method for near‐surface applications. Near Surface Geophysics10(6), 453–468.
    [Google Scholar]
  30. KemnaA., VanderborghtJ., KulessaB. and VereeckenH.2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology267, 125–146.
    [Google Scholar]
  31. KochK., RevilA. and HolligerK.2012. Relating the permeability of quartz sands to their grain size and spectral induced polarization characteristics. Geophysical Journal Internatwnal190(1), 230–242.
    [Google Scholar]
  32. KruschwitzS., BinleyA., LesmesD. and ElshenawyA.2010. Textural controls on low‐frequency electrical spectra of porous media. Geophysics75(4), WA113–WA123.
    [Google Scholar]
  33. LeroyP. and RevilA.2004. A triple‐layer model of the surface electrochemical properties of clay minerals. Journal of Colloid and Interface Science270(2), 371–380.
    [Google Scholar]
  34. LesmesD.P. and FryeK.M.2001. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone. Journal of Geophysical Research106(B3), 4079–4090.
    [Google Scholar]
  35. LesmesD.P. and MorganF.D.2001. Dielectric spectroscopy of sedimentary rocks. Journal of Geophysical Research106(B7), 13329–13346.
    [Google Scholar]
  36. MaimonO. and RokachL.2005. Data Mining and Knowledge Discavery Handbook.Springer US. ISBN 978‐0‐387‐24435‐8.
    [Google Scholar]
  37. MartinhoE., AlmeidaF. and Senos MatiasM.J.2006. An experimental study of organic pollutant effects on time domain induced polarization measurements. Journal of Applied Geophysics60(1), 27–40.
    [Google Scholar]
  38. MeleM., BersezioR. and GiudiciM.2012. Hydrogeophysical imaging of alluvial aquifers: electrostratigraphic units in the quaternary Po alluvial plain (Italy). Internati0nal Journal of Earth Sciences101(7), 2005–2025.
    [Google Scholar]
  39. MeleM., CeresaN., BersezioR., GiudiciM., InzoliS. and CavalliE.2015. Resolving electrolayers from VES: A contribution from modelling the electrical response of a tightly constrained alluvial stratigraphy. Journal of Applied Geophysics119, 25–35.
    [Google Scholar]
  40. MeleM., InzoliS., GiudiciM. and BersezioR.2014. Relating electrical conduction of alluvial sediments to textural properties and pore‐fluid conductivity. Geophysical Pmspecting62(3), 631–645.
    [Google Scholar]
  41. MüllerK., VanderborghtJ., EnglertA., KemnaA., HuismanJ.A., RingsJ. et al. 2010. Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity and multilevel groundwater samplers. Water Resources Research46(3), W03502.
    [Google Scholar]
  42. NordsiekS. and WellerA.2008. A new approach to fitting induced‐polarization spectra. Geophysics73(6), F235–F245.
    [Google Scholar]
  43. OhM., KimY. and ParkJ.2007. Factors affecting the complex permittivity spectrum of soil at a low frequency range of 1 kHz–10 MHz. Envimnmental Geology51(5), 821–833.
    [Google Scholar]
  44. PeltonW., WardS., HallofP., SillW. and NelsonP.1978. Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics43, 588–609.
    [Google Scholar]
  45. PonzianiM., SlobE.C., Ngan‐TillardD.J.M. and VanhalaH.2011. Influence of water content on the electrical conductivity of peat. International Water Technology Journal1(1), 14–21.
    [Google Scholar]
  46. PonzianiM., SlobE.C., VanhalaH. and Ngan‐TillardD.J.M.2012. Influence of physical and chemical properties on the low‐frequency complex conductivity of peat. Near Surface Geophysics10(6), 491–501.
    [Google Scholar]
  47. ReynoldsJ.M.2011. An Introduction to Applied and Environmental Geophysics.Wiley‐Blackwell. ISBN 978‐0‐471‐48536‐0.
    [Google Scholar]
  48. RevilA., EppehimerJ.D., SkoldM., KaraoulisM., GodinezL. and PrasadM.2013. Low‐frequency complex conductivity of sandy and clayey materials. Journal of Colloid and Interface Science398, 193–209.
    [Google Scholar]
  49. RevilA. and FlorschN.2010. Determination of permeability from spectral induced polarization in granular media. Geophysical Journal International181, 1480–1498.
    [Google Scholar]
  50. RevilA., FlorschN. and CamerlynckC.2014. Spectral induced polarization porosimetry. Geophysical Journal Internatwnal198(2), 1016–1033.
    [Google Scholar]
  51. RevilA. and GloverP.W.J.1998. Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophysical Research Letters25(5), 691–694.
    [Google Scholar]
  52. RevilA., KochK. and HolligerK.2012. Is it the grain size or the characteristic pore size that controls the induced polarization relaxation time of clean sands and sandstones?Water Resources Research48, W05602.
    [Google Scholar]
  53. RevilA. and SkoldM.2011. Salinity dependence of spectral induced polarization in sands and sandstones. Geophysical Journal Internatwnal187(2), 813–824.
    [Google Scholar]
  54. RobinsonD.A. and FriedmanS.P.2001. Effect of particle size distribution on the effective dielectric permittivity of saturated granular media. Water Resources Research37(1), 33–40.
    [Google Scholar]
  55. RousseeuwP.J.1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics,20, 53–65.
    [Google Scholar]
  56. SaltasV., VallianatosF., SoupiosP., MakrisJ.P. and TriantisD.2007. Dielectric and conductivity measurements as proxy method to monitor contamination in sandstone. Journal of Hazardous Material142(1–2), 520–525.
    [Google Scholar]
  57. SchwartzN., HuismanJ.A. and FurmanA.2012. The effect of NAPL on the electrical properties of unsaturated porous media. Geophysical Journal international188(3), 1007–1011.
    [Google Scholar]
  58. ScottJ.B.T. and BarkerR.D.2003. Determining pore‐throat size in Permo‐Triassic sandstones from low‐frequency electrical spectroscopy. Geophysical Research Letters30(9), 1450.
    [Google Scholar]
  59. SenP.N., GoodeP.A. and SibbitA.1988. Electrical conduction in clay bearing sandstones at low and high salinities. Journal of Applied Physics63(10), 4832.
    [Google Scholar]
  60. SkoldM., RevilA. and VaudeletP.2011. The pH dependence of spectral induced polarization of silica sands: experiment and modeling. Geophysical Research Letters38(12), L12304.
    [Google Scholar]
  61. SlaterL.2007. Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries–a review. Surveys in Geophysics28(2–3), 169–197.
    [Google Scholar]
  62. SlaterL.D., BarrashW., MontreyJ. and BinleyA.2014. Electrical‐hydraulic relationships observed for unconsolidated sediments in the presence of a cobble framework. Water Resources Research50(7), 5721–5742.
    [Google Scholar]
  63. SlaterL.D. and GlaserD.R.2003. Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization. Geophysics68(5), 1547–1558.
    [Google Scholar]
  64. SlaterL., NtarlagiannisD. and WishartD.2006. On the relationship between induced polarization and surface area in metal‐sand and clay‐sand mixtures. Geophysics71(2), A1–A5.
    [Google Scholar]
  65. TarasovA. and TitovK.2013. On the use of the Cole‐Cole equations in spectral induced polarization. Geophysical Journal International195, 352–356.
    [Google Scholar]
  66. TongM., LiL., WangW.N. and JiangY.2006. Determining capillary‐pressure curve, pore‐size distribution, and permeability from induced polarization of shaley sand. Geophysics71(3), N33–N40.
    [Google Scholar]
  67. UlrichC. and SlaterL.D.2004. Induced polarization measurements on unsaturated, unconsolidated sands. Geophysics69(3), 762–771.
    [Google Scholar]
  68. UstraA., SlaterL.D., NtarlagiannisD. and ElisV.2012. Spectral induced polarization (SIP) signatures of clayey soils containing toluene. Near Surface Geophysics10(6), 503–515.
    [Google Scholar]
  69. VanhalaH.1997. Mapping oil‐contaminated sand and till with the spectral induced polarization (SIP) method. Geophysical Prospecting45, 303–326.
    [Google Scholar]
  70. VolkmannJ. and KlitzschN.2010. Frequency‐dependent electric properties of microscale rock models for frequencies from one millihertz to ten kilohertz. Vadose Zone Journal9(4), 858–870.
    [Google Scholar]
  71. WalkleyA. and BlackI.A.1934. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science37(1), 29–38.
    [Google Scholar]
  72. WardJ. H.Jr.1963. Hierarchical grouping to ptimize objective function. Journal of the American Statistical Association58(301), 236–244.
    [Google Scholar]
  73. WaxmanM.H. and SmitsL.J.M.1968. Electrical conductivities in oil‐bearing shaly sands. Society of Petroleum Engineers Journal8, 107–122.
    [Google Scholar]
  74. WellerA., BreedeK., SlaterL. and NordsiekS.2011. Effect of changing water salinity on complex conductivity spectra of sandstones. Geophysics76(5), F315–F327.
    [Google Scholar]
  75. WellerA. and SlaterL.D.2012. Salinity dependence of complex conductivity of unconsolidated and consolidated materials: comparisons with electrical double layer models. Geophysics77(5), D185–D198.
    [Google Scholar]
  76. WellerA., SlaterL., NordsiekS. and NtarlagiannisD.2010. On the estimation of specific surface per unit pore volume from induced polarization: a robust empirical relation fits multiple data sets. Geophysics75(4), WA105–WA112.
    [Google Scholar]
  77. ZhaoY., ZimmermannE., HuismanJ.A., TreichelA., WoltersB., van WaasenS. et al. 2013. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects. Measurement Science and Technology24, 085005.
    [Google Scholar]
  78. ZhaoY., ZimmermannE., HuismanJ.A., TreichelA., WoltersB., van WaasenS. et al. 2015. Phase corrections of electromagnetic coupling effects in cross‐borehole EIT measurements. Measurement Science and Technology26(1), 15801.
    [Google Scholar]
  79. ZimmermannE., KemnaA., BerwixJ., GlaasW., MünchH.M. and HuismanJ.A.2008. A high‐accuracy impedance spectrometer for measuring sediments with low polarizability. Measurement Science and Technology19(10), 105603.
    [Google Scholar]
  80. ZisserN., KemnaA. and NoverG.2010. Relationship between low‐frequency electrical properties and hydraulic permeability of low‐permeability sandstones. Geophysics75(3), E131–E141.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016033
Loading
/content/journals/10.3997/1873-0604.2016033
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error