1887
Volume 65, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In a multi‐parameter waveform inversion, the choice of the parameterisation influences the results and their interpretations because leakages and the tradeoff between parameters can cause artefacts. We review the parameterisation selection when the inversion focuses on the recovery of the intermediate‐to‐long wavenumbers of the compressional velocities from the compressional body (P) waves. Assuming a transverse isotropic medium with a vertical axis of symmetry and weak anisotropy, analytical formulas for the radiation patterns are developed to quantify the tradeoff between the shear velocity and the anisotropic parameters and the effects of setting to zero the shear velocity in the acoustic approach. Because, in an anisotropic medium, the radiation patterns depend on the angle of the incident wave with respect to the vertical axis, two particular patterns are discussed: a transmission pattern when the ingoing and outgoing slowness vectors are parallel and a reflection pattern when the ingoing and outgoing slowness vectors satisfy Snell's law. When the inversion aims at recovering the long‐to‐intermediate wavenumbers of the compressional velocities from the P‐waves, we propose to base the parameterisation choice on the transmission patterns. Since the P‐wave events in surface seismic data do not constrain the background (smooth) vertical velocity due to the velocity/depth ambiguity, the preferred parameterisation contains a parameter that has a transmission pattern concentrated along the vertical axis. This parameter can be fixed during the inversion which reduces the size of the model space. The review of several parameterisations shows that the vertical velocity, the Thomsen parameter δ, or the Thomsen parameter ε have a transmission pattern along the vertical axis depending on the parameterisation choice. The review of the reflection patterns of those selected parameterisations should be done in the elastic context. Indeed, when reflection data are also inverted, there are potential leakages of the shear parameter at intermediate angles when we carry out acoustic inversion.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12452
2016-09-26
2024-04-20
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.1980. Quantitative Seismology, Vol I. Freeman, San Francisco, USA.
    [Google Scholar]
  2. AlkhalifahT.2000. An acoustic wave equation for anisotropic media. Geophysics65, 1239–1250.
    [Google Scholar]
  3. AlkhalifahT.2015. Scattering angle based filtering of waveform inversion gradients. Geophysical Journal International200, 363–373.
    [Google Scholar]
  4. AlkhalifahT. and PlessixR.‐E.2014. A recipe for practical full‐waveform inversion in anisotropic media: an analytical parameter resolution study. Geophysics79, R91–R101.
    [Google Scholar]
  5. AlkhalifahT. and TsvankinI.1995. Velocity analysis for transversely isotropic media. Geophysics60, 1550–1566.
    [Google Scholar]
  6. BaetenG., de MaagJ.W., PlessixR.‐E., KlaassenR., QureshiT., KleemeyerM.et al. 2013. The use of low frequencies in a full‐waveform inversion and impedance inversion land seismic case study. Geophysical Prospecting61, 701–711.
    [Google Scholar]
  7. BambergerA., ChaventG. and LaillyP.1979. About the stability of the inverse problem in 1‐D wave equations: application to the interpretation of seismic profiles. Applied Mathematics and Optimization5, 1–47.
    [Google Scholar]
  8. BeylkinG. and BurridgeR.1990. Linearized inverse scattering problems in acoustics and elasticity. Wave Motion12, 15–52.
    [Google Scholar]
  9. ČervenýV.2001. Seismic Ray Theory. Cambridge University Press.
    [Google Scholar]
  10. ClaerboutJ.F.1985. Imaging the Earth's interior. Blackwell Scientific Publication Co., Boston, USA.
  11. DevaneyA.J.1981. Inverse‐scattering theory within the Rytov approximation. Optics Letters6, 374–376.
    [Google Scholar]
  12. DevaneyA.J1984. Geophysical diffraction tomography. IEEE Transactions on Geosciences and Remote Sensing22, 3–13.
    [Google Scholar]
  13. De WolfD.A.1985. Renormalization of EM fields in application to large‐angle scattering from randomly continuous media and sparse particle distributions. IEEE Transactions Antennas and Propagations33, 608–615.
    [Google Scholar]
  14. DjebbiR., PlessixR.‐E. and AlkhalifahT.2016. Analysis of the traveltime sensitivity kernels for an acoustic transversely isotropic medium with a vertical axis of symmetry. Geophysical Prospecting [Online].
    [Google Scholar]
  15. DoumaH., YingstD., VasconcelosI. and TrompJ.2010. On the connection between artifact filtering in reverse time migration and adjoint tomography. Geophysics75, S219–S223.
    [Google Scholar]
  16. DuveneckE., MilcikP., BakkerP.M. and PerkinsC.2008. Acoustic VTI wave equations and their application for anisotropic reverse‐time migration. 78th SEG Meeting, Las Vegas, USA, Expanded Abstracts, 2186–2189.
  17. ForguesÉ. and LambaréG.1997. Parameterization study for acoustic and elastic ray + Born inversion. Journal of Seismic Exploration6, 253–278.
    [Google Scholar]
  18. GauthierO., VirieuxJ. and TarantolaA.1986. Two‐dimensional nonlinear inversion of seismic waveforms. Geophysics51, 1387–1403.
    [Google Scholar]
  19. GélisC., VirieuxJ. and GrandjeanG.2007. Two‐dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain. Geophysical Journal International168, 605–633.
    [Google Scholar]
  20. GholamiY., BrossierR., OpertoS., RibodettiA. and VirieuxJ.2013. Which parametrization for acoustic VTI full waveform inversion? Part 1: sensitivity and trade‐off analysis. Geophysics78, R81–R105.
    [Google Scholar]
  21. GrechkaV., ZhangL. and RectorJ.W.2004. Shear waves in acoustic anisotropic media. Geophysics69, 576–582.
    [Google Scholar]
  22. HelbigK.1994. Foundations of elastic anisotropy for exploration seismics. In: Handbook of Geophysical Exploration: Seismic Exploration, Vol. 22 (eds. K.Helbig and S.Treitel ). Pergamon.
    [Google Scholar]
  23. KamathN. and TsvankinI.2014. Sensitivity analysis for elastic full‐waveform inversion in VTI media. 84th SEG meeting, Denver USA, Expanded Abstracts, 1162–1166.
  24. KamathN. and TsvankinI.2016. Elastic full‐waveform inversion for VTI media: methodology and sensitivity analysis. Geophysics81, C53–C68.
    [Google Scholar]
  25. LaillyP.1983. The seismic inverse problem as a sequence of before stack migrations. Conference on Inverse Scattering, Theory and Application, Society for Industrial and Applied Mathematics, Expanded Abstracts, 206–220.
  26. MoraP.1988. Elastic wave‐field inversion of reflection and transmission data. Geophysics53, 750–759.
    [Google Scholar]
  27. MulderW.A. and PlessixR.‐É.2008. Exploring some issues in acoustic full waveform inversion. Geophysical Prospecting56, 827–841.
    [Google Scholar]
  28. OpertoS., GholamiY., PrieuxV., RibodettiA., BrossierR., MétivierL.et al. 2013. A guided tour of multiparameter full‐waveform inversion with multicomponent data: from theory to practice. The Leading Edge32, 1040–1054.
    [Google Scholar]
  29. PlessixR.‐É.2009. Three‐dimensional frequency‐domain full‐waveform inversion with an iterative solver. Geophysics74, WCC149–WCC157.
    [Google Scholar]
  30. PlessixR.‐É. and PerkinsC.2010. Full waveform inversion of a deep water ocean bottom seismometer dataset. First Break28, 71–78.
    [Google Scholar]
  31. PlessixR.‐É. and CaoQ.2011. A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium. Geophysical Journal International185, 539–556.
    [Google Scholar]
  32. PlessixR.‐É., MilcikP., RynjaH., StopinA., MatsonK. and AbriS.2013. Multiparameter full‐waveform inversion: marine and land examples. The Leading Edge32, 1030–1038.
    [Google Scholar]
  33. PlessixR.‐É., StopinA., MilcikP. and MatsonK.2014. Acoustic and anisotropic multi‐parameter seismic full waveform inversion case studies. 84th SEG meeting, Denver USA, Expanded Abstracts, 1056–1060.
  34. PrattR.G., SongZ. and WarnerM.1996. Two‐dimensional velocity models from wide‐angle seismic data by wavefield inversion. Geophysical Journal International124, 323–340.
    [Google Scholar]
  35. RatcliffeA., WinC., VinjeV., ConroyG., WarnerM., UmplebyA.et al. 2011. Full waveform inversion: A North Sea OBS case study. 81st SEG meeting, San Antonio USA, Expanded Abstracts, 2384–2388.
  36. RouthP., KrebsJ., LazaratosS., BaumsteinA., LeeS., Ho ChaY.et al. 2011Encoded simultaneous source full‐wavefield inversion for spectrally shaped marine streamer data. 81st SEG meeting, San Antonio, USA, Expanded Abstracts, 2433–2438.
  37. RügerA.1997. P‐wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics62, 713–722.
    [Google Scholar]
  38. SirgueL., BarkvedO.I., DellingerJ., EtgenJ., AlbertinU. and KommedalJ.H.2010. Full waveform inversion: the next leap forward in imaging at Valhall. First Break28, 65–70.
    [Google Scholar]
  39. SniederR., XieM.Y., PicaA. and TarantolaA.1989. Retrieving both the impedance contrast and background velocity: a global strategy for the seismic reflection problem. Geophysics54, 991–1000.
    [Google Scholar]
  40. StopinA., PlessixR.‐É. and AbriS.2014. Multi‐parameter waveform inversion of a large wide‐azimuth low frequency land data set in Oman. Geophysics79, WA69–WA77.
    [Google Scholar]
  41. TarantolaA.1984. Inversion of seismic reflection data in acoustic approximation. Geophysics49, 1259–1266.
    [Google Scholar]
  42. TarantolaA.1986. A strategy for nonlinear inversion of seismic reflection data. Geophysics51, 1893–1903.
    [Google Scholar]
  43. TarantolaA.1987. Inverse Problem: Methods for Data Fitting and Model Parameter Estimation, 2nd Edition. Elsevier Science, Amsterdam.
    [Google Scholar]
  44. ThomsenL.A.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  45. TsvankinI.2001. Seismic Signature and Analysis of Reflection Data in Anisotropic Media. Elsevier Scientific Publ. Co., Inc.
    [Google Scholar]
  46. VighD., StarrB., KapoorJ. and LiH.2010. 3D full waveform inversion on a Gulf of Mexico data set. 80th SEG meeting, Denver USA, Expanded Abstracts, 957–561.
  47. VirieuxJ. and OpertoS.2009. An overview of full waveform inversion in exploration geophysics. Geophysics74, WCC1–WCC26.
    [Google Scholar]
  48. WangH., SinghS.C., AudebertF. and CalandraH.2015. Inversion of seismic refraction and reflection data for building long‐wavelength velocity models. Geophysics80, R81–R93.
    [Google Scholar]
  49. WarnerM., RatcliffeA., NangooT., MorganJ., UmplebyA., ShahN.et al. 2013. Anisotropic 3D full‐waveform inversion. Geophysics78, R59–R80.
    [Google Scholar]
  50. WoodwardM.J.1992. Wave‐equation tomography. Geophysics57, 15–26.
    [Google Scholar]
  51. WuR.S. and AkiK.1985. Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics50, 582–595.
    [Google Scholar]
  52. WuR.S. and ZhengY.2014. Nonlinear partial derivative and its De Wolf approximation for nonlinear seismic inversion. Geophysical Journal International196, 1827–1843.
    [Google Scholar]
  53. ZhouW., BrossierR., OpertoS. and VirieuxJ.2015. Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation. Geophysical Journal International202, 1535–1554.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12452
Loading
/content/journals/10.1111/1365-2478.12452
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy; Full‐waveform inversion; Radiation pattern

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error