1887
Volume 14 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

This work aims to determine the compactness/density of hot mix asphalt by measuring its permittivity by means of step‐frequency radar. As hot mix asphalt (HMA) is mainly made of rocks; their dielectric properties are measured in the frequency range of 0.5 ‐ 4 Ghz with step‐frequency radar, using cylindrical cavities. The results show that the rocks can be considered as low‐loss dielectric. As electromagnetic mixing models are required to translate measured permittivity to the compactness, power law models and unified mixing rules are needed for laboratory experimental data. The slab permittivity of various compactness is determined with the help of the step‐frequency radar system. This study shows that: (i) the selection of the electromagnetic mixing model has a critical impact on the accuracy of the calculated compactness; (ii) the choice of the host matrix for a family of unified mixing rules has huge consequences; and (iii) the best assessment of compactness/density is given by the complex refractive index model and Rayleigh and Böttcher models with an aggregate matrix.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016031
2016-04-01
2024-04-18
Loading full text...

Full text loading...

References

  1. Al‐QadiI. and LahouarS.2004. Use of GPR for thickness measurement and quality control of flexible pavements (with discussion). Journal of the Association of Asphalt Paving Technologists73.
    [Google Scholar]
  2. Al‐QadiI.L., LengZ., LahouarS. and BaekJ.2010. In‐place hot‐mix asphalt density estimation using ground‐penetrating radar. Transportation Research Record: Journal of the Transportation Research Board2152,. 19–27.
    [Google Scholar]
  3. ASTM
    ASTM2011. ASTM D2950/D2950M: Standard Test Method for Density of Bituminous Concrete in Place by Nuclear Methods.
    [Google Scholar]
  4. ASTM
    ASTM2010. ASTM D6938‐10: Standard Test Method for In Place Density and Water Content of Soil and Soil Aggregate by Nuclear Methods (Shallow Depth).
    [Google Scholar]
  5. BenedettoA. and TostiF.2013. Inferring bearing ratio of unbound materials from dielectric properties Using GPR: the case of runaway safety areas. In: Airfield Highway Pavement, pp. 1336–1347.
    [Google Scholar]
  6. BirchakJ.R., GardnerC.G., HippJ.E. and VictorJ.M.1974. High dielectric constant microwave probes for sensing soil moisture. Proceedings of the IEEE62,. 93–98.
    [Google Scholar]
  7. BonaN., OrtenziA. and CapaccioliS.2002. Advances in understanding the relationship between rock wettability and high‐frequency dielectric response. Journal of Petroleum Science and Engineering33,. 87–99.
    [Google Scholar]
  8. BöttcherC., Van BelleO., BordewijkP., RipA. and YueD.D.1974. Theory of electric polarization. Journal of the Electrochemical Society121. 211C‐211C.
    [Google Scholar]
  9. BrovelliA. and CassianiG.2010. A combination of the Hashin–Shtrikman bounds aimed at modelling electrical conductivity and permittivity of variably saturated porous media. Geophysical Journal International180,. 225–237.
    [Google Scholar]
  10. CampbellM.J. and UlrichsJ.1969. Electrical properties of rocks and their significance for lunar radar observations. Journal of Geophysical Research74,. 5867–5881.
    [Google Scholar]
  11. ChelidzeT.L. and GueguenY.1999. Electrical spectroscopy of porous rocks: a review—I. theoretical models. Geophysical Journal International137, 1–15.
    [Google Scholar]
  12. ChelidzeT.L., GueguenY. and RuffetC.1999. Electrical spectroscopy of porous rocks: a review—II. experimental results and interpretation. Geophysical Journal International137,. 16–34.
    [Google Scholar]
  13. DobsonM., UlabyF., HallikainenM. and El‐RayesM.1985. Microwave dielectric behavior of wet soil—part II: dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing23, 35–46.
    [Google Scholar]
  14. FauchardC., BeaucampB. and LaguerreL.2015. Non‐destructive assessment of hot mix asphalt compaction/density with a step‐frequency radar: case study on a newly paved road. Near Surface Geophysics13, 289–297.
    [Google Scholar]
  15. FauchardC., LiB., LaguerreL., HritierB., BenjellounN. and KadiM.2013. Determination of the compaction of hot mix asphalt using highfrequency electromagnetic methods. NDT & E International60,. 40–51.
    [Google Scholar]
  16. GomaaM.M. and ElsayedR.2009. Thermal effect of magma intrusion on the electrical properties of magnetic rocks from hammamat sediments, Cairo, Egypt. Geophysical Prospecting57, 141–149.
    [Google Scholar]
  17. HallikainenM., UlabyF., DobsonM., El‐RayesM. and WuL.K.1985. Microwave dielectric behavior of wet soil—Part 1: empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing23. 25–34.
    [Google Scholar]
  18. HasarU.2009. Non‐destructive testing of hardened cement specimens at microwave frequencies using a simple free‐space method. NDT & E International42. 550–557.
    [Google Scholar]
  19. KadenH., KnigerF., StrmmeM., NiklassonG.A. and EmmerichK.2013. Low‐frequency dielectric properties of three bentonites at different adsorbed water states. Journal of Colloid and Interface Science411., 16–26.
    [Google Scholar]
  20. LengZ., Al‐QadiI.L. and LahouarS.2011. Development and validation for in situ asphalt mixture density prediction models. NDT & E International44. 369–375.
    [Google Scholar]
  21. LesmesD.P. and MorganF.D.2001. Dielectric spectroscopy of sedimentary rocks. Journal of Geophysical Research: Solid Earth106. 13329–13346.
    [Google Scholar]
  22. LiS., AkyelC. and BosisioR.1981. Precise calculations and measurements on the complex dielectric constant of lossy materials using tm010 cavity perturbation techniques. IEEE Transactions on Microwave Theory and Techniques29. 1041–1048.
    [Google Scholar]
  23. LichteneckerK. and RotherK.1931. Die herleitung des logarithmischen mischungsgesetzes aus allgemeinen prinzipien der stationiren strmung. Zeitschrift fur Physik32. 255–260.
    [Google Scholar]
  24. LooyengaH.1965. Dielectric constants of heterogeneous mixtures. Physica31. 401–406.
    [Google Scholar]
  25. LopatinV.V. and MartemyanovS.M.2012. Investigation of the dielectric properties of oil shale. Russian Physics Journal55. 35–39.
    [Google Scholar]
  26. MaierhoferC. and WostmannJ.1998. Investigation of dielectric properties of brick materials as a function of moisture and salt content using a microwave impulse technique at very high frequencies. NDT & E International31. 259–263.
    [Google Scholar]
  27. NF EN 12697‐6
    NF EN 12697‐62012. Mélanges Bitumineux ‐ Méthodes D’essai Pour Mélange Hydrocarboné Chaud ‐ Partie 6: Détermination de la Masse Volumique Apparente des Éprouvettes Bitumineuses.
    [Google Scholar]
  28. NF EN 12697‐7
    NF EN 12697‐72003. Mélanges Bitumineux ‐ Méthodes D’essai Pour Mélange Hydrocarbone Chaud ‐ Partie 7: Détermination de la masse Volumique Apparente des Éprouvettes Bitumineuses par les Rayons Gamma.
    [Google Scholar]
  29. OlhoeftG.R. and StangwayD.W.1975. Dielctric properties of the first 100 meters of the moon. Earth Planetary Science Letters24. 394–404.
    [Google Scholar]
  30. ParkhomenkoE.I.1967. Electrical Properties of Rocks. SpringerUS.
    [Google Scholar]
  31. PolderD. and Van SantenJ.1946. The effective permeability of mixtures of solids. Physica12. 257–271.
    [Google Scholar]
  32. RobertA.1998. Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. Journal of Applied Geophysics40. 89–94.
    [Google Scholar]
  33. Saint‐AmantM. and StrangwayD.1970. Dielectric properties of dry, geological materials. Geophysics35. 624–645.
    [Google Scholar]
  34. SaltasV., VallianatosF. and TriantisD.2008. Dielectric properties of non‐swelling bentonite: The effect of temperature and water saturation. Journal of Non‐Crystalline Solids354. 5533–5541.
    [Google Scholar]
  35. SenP.N., ScalaC. and CohenM.H.1981. A self‐similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics46. 781–795.
    [Google Scholar]
  36. SengwaR.J. and SoniA.2008. Dielectric properties of some minerals of Western Rajasthan. Indian Journal of Radio & Space Physics37. 57–63.
    [Google Scholar]
  37. ShutkoA.M.1982. Microwave radiometry of lands under natural and artificial moistening. IEEE Transactions on Geoscience and Remote Sensing20. 18–26.
    [Google Scholar]
  38. SihvolaA. and KongJ.A.1988. Effective permittivity of dielectric mixtures. IEEE Transactions on Geoscience and Remote Sensing26420–429.
    [Google Scholar]
  39. SihvolaA.H.1999. Electromagnetic Mixing Formulas and Applications. The Institute of Electrical Engineers, London, U.K.
    [Google Scholar]
  40. TongM. and TaoH.2008. Permeability estimating from complex resistivity measurement of shaly sand reservoir. Geophysical Journal International173. 733–739.
    [Google Scholar]
  41. UlabyF., BengalT., DobsonM., EastJ., GarvinJ. and EvansD.1990. Microwave dielectric properties of dry rocks. IEEE Transactions on Geoscience and Remote Sensing28. 325–336.
    [Google Scholar]
  42. WienerO.1910. Zur theorie der refraktionskonstanten, berichte über die verhandlungen der königlich‐söchsischen gesellschaft der wisse‐schaften zu leipzig. Mathematisch‐Physikalische Klasse62. 256–277.
    [Google Scholar]
  43. YaghjianA.D.1980. Electric dyadic Green’s functions in the source region. Proceedings of the IEEE68248–263.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016031
Loading
/content/journals/10.3997/1873-0604.2016031
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error