1887
Volume 22, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Spanish territory offers a remarkable location to study the Messinian salinity crisis (MSC). So much so, that sub-basins and open margins to the Mediterranean Sea and the Atlantic Ocean can be studied from outcrop data, 2D and 3D seismic surveys, and well logs. From the analysed data, it can be determined that the Messinian sediments are involved in three third-order depositional sequences: (1) Late Tortonian–Messinian, with temperate carbonates, coral reefs and sandy turbidities; (2) Messinian, with on- and offshore deposition of shallow-marine evaporate and isotopic freshwater facies; and (3) Messinian–Early Pliocene, comprising deposits of sandy (Atlantic) and gypsum-sandy turbidites (Mediterranean) that filled incised valleys. From seismic images, the best exploration opportunities involve the lowstand systems tracts (LST), the carbonates and different facies under deep-water evaporates. For these, however, the problem is to establish the source rock, by: (a) the presence of Messinian deep-water paper shales; (b) the gas having to be biogenic in the absence of paper shales; and (c) reaching the maturity level in areas with limestone and coral reef prospects. The above possibilities come from our conception of the Messinian crisis, which was caused by two different episodes: climatic change in a restricted, but not desiccated, Mediterranean Sea, following by multiple sea-level falls and the deposition of their correlative LST turbiditic systems.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2015-085
2016-08-31
2024-04-24
Loading full text...

Full text loading...

References

  1. Alonso, B.
    2000. El Sistema turbidítico del Ebro: evolución sedimentaria durante el Plio-Cuaternario. [The Ebro turbiditic system: Plio-Quaternary sedimentary evolution] In: Alonso, B. & Ercilla, G. (eds) Valles submarinos y sistemas turbidíticos modernos. [Modern submarine valleys and turbiditic systems] Consejo Superior de Investigaciones Científicas, Barcelona, 90–112.
    [Google Scholar]
  2. Braga, J.C., Martín, J.M., Riding, R., Aguirre, I., Sánchez-Almazo, I. & Dinarès-Turell, J.
    2006. Testing models for the Messinian salinity crisis: The Messinian record in Almería, SE Spain. Sedimentary Geology, 188–189, 131–154.
    [Google Scholar]
  3. Cita, M.B.
    1991. Development of a scientific controversy. In: Müller, D.W., McKenzie, J.A. & Weissert, H. (eds) Controversies in Modern Geology: Evolution of Geological Theories in Sedimentology, Earth History and Tectonics. Academic Press, London, 13–23.
    [Google Scholar]
  4. Clauzon, G.
    1973. Le canyon messinien du Rhone; une preuve decisive de ‘desicated deep-basin-model’ [The Rhone Messinian canyon; a decisive proof for a ‘dessicated deep-basin-model’] (Hsü, Cita and Ryan, 1973). Bulletin de la Société Géologique de France, 24, 597–610.
    [Google Scholar]
  5. Dabrio, C.J. & Martín, J.M.
    1978. Los arrecifes messinienses de Almería (SE de España). [The Messinian reefs of Almeria (SE Spain)] Cuadernos de Geología. Ibérica, 8–9, 85–100.
    [Google Scholar]
  6. Dabrio, C.J., Martín, J.M. & Megias, A.
    1982. Signification sédimentaire des évaporites de la depression de Granade (Espagne). [Sedimentary significance of Granada depression evaporites] Bulletin de la Société Géologique de France, 24, 705–710.
    [Google Scholar]
  7. Dal Cin, M., Accaino, F. et al.
    2015. The Messinian salinity crisis in the West-Mediterranean Sea – some previous results about the Messinian events. Paper presented at the 77th European Association of Geoscientists and Engineers (EAGE) Conference and Exhibition, 1 June 2015, Madrid.
    [Google Scholar]
  8. Diaz Merino, C., Comas, M. & Martínez del Olmo, W.
    2003. Secuencias de depósito neógenas del margen NO del Mar de Alborán, cuenca de Málaga. [Neogene sedimentary sequences of NW Alboran sea margin, Málaga basin] Geotemas, 5, 61–65.
    [Google Scholar]
  9. Dietz, R.A. & Woodhouse, M.
    1989. Mediterranean sub-bottom giant Messinian salt as precipite. Geological Society of America Annual Meeting with Abstracts, 21, 263.
    [Google Scholar]
  10. Driussi, O., Maillard, A. et al.
    2015. Messinian Salinity Crisis deposits widespread over the Balearic Promontory: Insights from new high-resolution seismic data. Marine and Petroleum Geology, 66, 41–54.
    [Google Scholar]
  11. García Veigas, J., Rosell, L., Utrilla, R. & Orti, F.
    1990. Aportaciones geoquímicas al conocimiento de las evaporitas messinienses: cuencas de Palma (Mallorca), S. Miguel de Salinas (Alicante) y Lorca (Murcia). [Geochemical contributions to the knowledge of the Messinian evaporites: Palma (Mallorca), St Miguel de Salinas (Alicante) and Lorca (Murcia) basins.] In: Orti, F. & Salvany, J.M. (eds) Formaciones evaporíticas de la cuenca del Ebro y cadenas periféricas, y de la zona de Levante. [Evaporitic formations of the Ebro Basin and the satellite ranges, and Levant zone] ENRESA–University of Barcelona, Barcelona, 257–266.
    [Google Scholar]
  12. García Veigas, J., Orti, F. Rosell, L. & Inglés, M.
    1994. Caracterización petrológica y geoquímica de la Unidad Salina Messiniense de la cuenca de Lorca (sondeos S4 y S5). [Petrological and geochemical characterization of the Messinian salt unit of the Lorca Basin (S4 and S5 wells)] Geogaceta, 15, 78–81.
    [Google Scholar]
  13. García-Veigas, J., Cendón, D.I., Rosell, L., Ortí, F., Torres Ruiz, J., Martín, J.M. & Sanz, E.
    2013. Salt deposition and brine evolution in the Granada Basin (Late Tortonian, SE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 452–465.
    [Google Scholar]
  14. Gorini, C., Montadert, L. & Rabineau, M.
    2015. New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean. Marine and Petroleum Geology.66, (part 1), 278–294.
    [Google Scholar]
  15. Hsü, K.J., Ryan, W.B.F. & Cita, M.B.
    1973. Late Miocene desiccation of the Mediterranean. Nature, 242, 240–244.
    [Google Scholar]
  16. Ibrihen, N., Gonzalez, H., García, L., Pérez, L., Abushaala, L., Krpa, B. & Ponte, A.
    2015. Evidence of Messinian channels deposits in the Valencia Basin from 3D seismic analysis – a possible Messinian new play. Paper presented at the 77th European Association of Geoscientists and Engineers (EAGE) Conference and Exhibition, 1 June 2015, Madrid.
    [Google Scholar]
  17. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S.
    1999. Chronology, causes and progression of the Mediterranean salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  18. Lugli, S. Manzi, V., Roveri, M. & Schreiber, B.C.
    2015. The deep record of the Messinian salinity crisis: Evidence of a non-desiccated Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 433, 201–218.
    [Google Scholar]
  19. Maillard, A., Gorini, Ch., Mauffret, A., Sage, F. Lofi, J. & Gaullier, V.
    2006. Offshore evidence of polyphase erosion in the Valencia Basin (Northwestern Mediterranean): Scenario for the Messinian Salinity Crisis. Sedimentary Geology, 188–189, 69–91.
    [Google Scholar]
  20. Manzi, V., Roveri, M., Gennari, R. et al.
    2007. The deep-water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: The Fanantello section (Northern Apennines, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 470–499.
    [Google Scholar]
  21. Martín, J.M. & Braga, J.C.
    1994. Mesinian events in the Sorbas basin in southeastern Spain and their implication in the recent history of the Mediterranean. Sedimentary Geology, 90, 257–268.
    [Google Scholar]
  22. Martínez del Olmo, W.
    1996a. Depositional sequences in the Gulf of Valencia Tertiary basin. In: Friend, P. & Dabrio, C. (eds) Tertiary Basins of Spain, The Stratigraphic Record of Crustal Kinematics. Cambridge University Press, Cambridge, 55–67.
    [Google Scholar]
  23. 1996b. Secuencias de depósito y estructuración diapírica en el Prebético Oriental e Ibérico de Valencia desde sondeos y líneas sísmicas. [Sedimentary sequences and diapiric structure in the Eastern Prebetic and Iberian of Valencia using wells and seismic lines] PhD thesis, Universidad Complutense, Madrid.
    [Google Scholar]
  24. 1996c. Yesos de margen y turbidíticos en el Messiniense del Golfo de Valencia: una desecación imposible. [Margin and turbiditic gypsum in the Messinian of the Valencia Gulf: an impossible dessication] Revista Sociedad Geologica de España, 9, 97–116.
    [Google Scholar]
  25. 2011a. El arrecife Messiniense del sondeo Torrevieja Marino C-1 desde las líneas sísmicas (SE de España). [The Messinian reef of the Torrevieja Marino C-1 well from seismic lines (SE of Spain)] Revista Sociedad Geológica de España, 24, 173–185.
    [Google Scholar]
  26. 2011b. El Messiniense en el Golfo de Valencia y el Mar de Alborán: implicaciones paleogeográficas y paleoceanográficas. [The Messinian at Valencia Gulf and Alborán Sea: palaeogeographic and palaeoceanographic implications] Revista Sociedad Geológica de España, 24, 237–257.
    [Google Scholar]
  27. Martínez del Olmo, W. & Comas, M.
    2008. Arquitectura sísmica, olistostromas y fallas extensionales en el norte de la cuenca oeste del Mar de Alborán. [Seismic architecture, olistostromes and extensional faults in north western Alboran Sea basin.] Revista Sociedad Geológica de España, 21, 151–167.
    [Google Scholar]
  28. Martínez del Olmo, W. & Jurado, M.J.
    1991. El Neógeno de la cuenca del Mar Menor (Murcia) a partir de datos del subsuelo. [The Neogene in the Mar Menor basin (Murcia), from subsurface data] In: I Congreso Grupo Español del Terciario. Vic, 206–209.
    [Google Scholar]
  29. Martínez del Olmo, W. & Serrano Oñate, A.
    2000. Secuencias de depósito en el Neógeno de la Cuenca del Mar Menor (Alicante-Murcia, SE de España). [Neogene sedimentary sequences in the Mar Menor basin (Alicante-Murcia, SE Spain)] Geotemas, 1, 243–246.
    [Google Scholar]
  30. Martínez del Olmo, W., Riaza Molina, C. & Torrescusa, S.
    1996. Descenso eustático Messiniense en una cuenca atlántica. El cañón submarino del Río Guadalquivir (SO. de España). [Messinian eustatic fall in the Atlantic basin. The submarine canyon of the Guadalquivir River (SW Spain)] Geogaceta, 20, 138–114.
    [Google Scholar]
  31. Martínez del Olmo, W., García Mojonero, C. & Torrecusa, S.
    2005. The Guadalquivir and Gulf of Cadiz gas basin. In: Martínez del Olmo, W. (ed.) 25 Aniversario Asociación de Geólogos y Geofísicos Españoles del Petróleo. Asociación de Geólogos y Geofísicos Españoles del Petróleo (AGGEP), Madrid, 105–121.
    [Google Scholar]
  32. Mutti, E. & Ricci Lucchi, F.
    1972. Le turbidity delĺAppenino settentrionale: introduzione alĺanalisi di facies. [The turbidites of the northern Appenines: introduction to the facies analysis] Memorias Socièta Geologica Italia, 11, 161–183.
    [Google Scholar]
  33. Orti, F., García Veigas, J. et al.
    1993. Correlación litoestratigráfica de las evaporitas messinienses en las cuencas de Lorca y Fortuna (Murcia). [Lithostratigraphic correlation of Messinian evaporites in the Lorca and Fortuna basins (Murcia)] Geogaceta, 14, 98–101.
    [Google Scholar]
  34. Parea, G.C. & Ricci Lucchi, F.
    1972. Resedimented evaporates in the Periadriatic trough (Upper Miocene, Italy). Israel Journal Earth Sciences, 21, 25–141.
    [Google Scholar]
  35. Riaza, C. & Martínez del Olmo, W.
    1996. Depositional model of the Guadalquivir–Gulf of Cadiz Tertiary basin. In: Friend, P. & Dabrio, C. (eds) Tertiary Basins of Spain, The Stratigraphic Record of Crustal Kinematics. Cambridge University Press, Cambridge, 330–338.
    [Google Scholar]
  36. Ricci Lucchi. F.
    1973. Resedimented evaporites: Indicators of slope instability and depp-basin conditions in Periadriatic Messinian (Apennines Foredeep, Italy). In: Drooger, C.W. (ed.) Messinian Events in the Mediterranean. North Holland, Amsterdam, 142–149.
    [Google Scholar]
  37. Rouchy, J.M.
    1982. La genèse des évaporites messiniennes de Mediterraneè. [The genesis of the Messinian evaporites of the Mediterranean Sea] Mémoires du Muséum d'histoire naturelle, France, 50, 1–267.
    [Google Scholar]
  38. Rouchy, J.M. & Caruso, A.
    1996. The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sedimentary Geology, 188–189, 35–67.
    [Google Scholar]
  39. Roveri, M., Manzi, V., Bassetti, M.A., Merini, M. & Ricci Lucchi, F.
    1998. Stratigraphy of the Messinian post-evaporitic stage in eastern-Romagna (northern Apennines, Italy). Giornale di Geologia, 60, 119–142.
    [Google Scholar]
  40. Roveri, M., Bassetti, M.A. & Ricci Lucchi, F.
    2001. The Mediterranean Messinian Salinity Crisis: an Apennine foredeep perspective. Sedimentary Geology, 140, 201–214.
    [Google Scholar]
  41. Roveri, M., Lugli, S., Manzi, V., Gennari, R. & Schreiber, B.C.
    2014a. High-resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation. Marine Geology, 349, 113–125.
    [Google Scholar]
  42. Roveri, M., Manzi, V., Bergamasco, A., Falcieri, F., Gennari, R. & Lugli, S.
    2014b. Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity crisis. American Journal of Science, 314, 751–784.
    [Google Scholar]
  43. Roveri, M., Gennari, R., Lugli, S., Manzi, V., Minelli, N., Reghizzi, M. & Schreiber, B.C.
    2015. Messinian Salinity Crisis – facts, theories, open problems and their implications for Mediterranean exploration. Paper presented at the 77th European Association of Geoscientists and Engineers (EAGE) Conference and Exhibition, 1 June 2015, Madrid.
    [Google Scholar]
  44. Ryan, W.B.F.
    1976. Quantitative evolution of the deep of western Mediterranean before, during and after Late Miocene salinity crisis. Sedimentology, 23, 791–813.
    [Google Scholar]
  45. Ryan, W.B.F. & Cita, M.B.
    1978. The nature and distribution of Messinian erosional surface.Indication of a several kilometre deep Mediterranean in the Miocene. Marine Geology, 27, 193–230.
    [Google Scholar]
  46. Savoye, B. & Piper, D.J.W.
    1991. The Messinian event on the margin of the Mediterranean Sea in the Nice area, southern France. Marine Geology, 97, 279–304.
    [Google Scholar]
  47. Schreiber, B. & Helman, H.
    1989. What are the problems in forming deepwater Messinian evaporates?Geological Society of America Annual Meeting with Abstracts, 21, 363.
    [Google Scholar]
  48. Soria, J.M., Yébenes, A. & Caracuel, J.E.
    2002. La sección Messiniense-Plioceno de Crevillente (Cordillera Bética): expresión de la crisis de salinidad del Mediterráneo. [The Crevillente Messinian-Pliocene section (Betic ranges): an expression of the salinity crisis of the Mediterranean Sea] Geogaceta, 31, 159–162.
    [Google Scholar]
  49. 2003. Estratigrafía del Messiniense y Plioceno en el margen norte de la Cuenca del Bajo Segura (Cordillera Bética oriental). Cambios paleogeográficos asociados a la crisis de salinidad del Mediterráneo. [Messinian and Pliocene stratigraphy in the north margin of Bajo Segura Basin (eastern Betic Ranges). Palaeogeographic changes associated with the salinity crisis in the Mediterranean Sea] Geotemas, 5, 219–223.
    [Google Scholar]
  50. Soria, J.M., Caracuel, J.E., Corbí, H. & Yébenes, A.
    2007. La sedimentación de afinidad Lago Mare (Messiniense) y la transgresión del Plioceno en Alicante (Cuenca del Bajo Segura). [The Lago Mare affinity sedimentation (Messinian) and the Pliocene transgression in Alicante (Bajo Segura Basin)] Geogaceta, 41, 219–222.
    [Google Scholar]
  51. Vail, P.R.
    1987. Seismic stratigraphy interpretation procedure. In: Bally, A.W. (ed.) Atlas of Seismic Stratigraphy. American Association of Petroleum Geologists, Studies in Geology, 27, 1–10.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2015-085
Loading
/content/journals/10.1144/petgeo2015-085
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error