1887
Volume 22, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

New observations on the Sicily Messinian Tripoli have yielded a variably thick diatomitic, calcareous and shaly rock interval marked by an upwards disappearance of calcareous and siliceous plankton (barren lithosome), coexisting with a variability in vegetal remains and significant amounts of amorphous organic matter (AOM). Facies analysis associated with biostratigraphy and palaeoecology of the several field and borehole sections has been framed in a well-accepted chronological scheme that points to this barren interval coinciding with the stratigraphic upper and younger part of some Tripoli sections (bituminous Tripoli) located in the northern part of the study area.

Biostratigraphically, the barren lithosome falls within the Non-Distinctive Zone (NDZ) and is generally younger than the First Common Occurrence (FCO) of . . The age of its diachronous base appears older than the Messinian salinity crisis (MSC) deposits, because is well constrained by the calcareous plankton biostratigraphic markers along the underlying portions of the Tripoli. The top boundary of the barren rock interval, that is not always identifiable, could be age dated, following the proposed stratigraphic criteria. We infer that the Tripoli initial open-marine environment became, in more inner areas, progressively confined, with freshwater floodings alternating with short marine-water incursions in a shallow-water to continental domain. The collected information appears useful in addressing further exploration.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-006
2016-08-17
2024-03-29
Loading full text...

Full text loading...

References

  1. Accaino, F., Catalano, R. et al.
    2011. A crustal seismic profile across Sicily. Tectonophysics, 508, 52–61.
    [Google Scholar]
  2. Arambourg, C.
    1925. Révision des poissons fossiles de Licata (Sicile). Annales de Paléontologie, 14, 39–132.
    [Google Scholar]
  3. Aubry, M.P.
    1992. Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration. In: Prothero, D.R. & Berggren, W.A. (eds) Eocene–Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, NJ, 272–309.
    [Google Scholar]
  4. Backman, J., Raffi, I., Rio, D., Fornaciari, E. & Palike, H.
    2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletter on Stratigraphy, 45, 221–244.
    [Google Scholar]
  5. Baldacci, L.
    1886. Descrizione geologica dell'Isola di Sicilia. Regio Ufficio Geologico. Tipografia Nazionale, Roma. 1886.
    [Google Scholar]
  6. Beaufort et al.
    1997. Insolation Cycles as a Major Control of Equatorial Indian Ocean Primary Production. Science, 278, 1451–1454, http://doi.org/10.1126/science.278.5342.1451
    [Google Scholar]
  7. Bellanca, A., Caruso, A., Ferruzza, G., Neri, R., Rouchy, J.M., Sprovieri, M. & Blanc-Valleron, M.M.
    2001. Transition from marine to hypersaline conditions in the Messinian Tripoli Formation from the marginal areas of the central Sicilian Basin. Sedimentary Geology, 140, 87–105.
    [Google Scholar]
  8. Bianchi, F., Carbone, S. et al.
    1989. Sicilia orientale: profilo geologico Nebrodi – Iblei. Memorie della Società Geologica Italiana, 38, 429–458.
    [Google Scholar]
  9. Biffi, U.
    2010. Tripoli. Analisi palinologiche. Unpublished Report. ENI, Milano.
    [Google Scholar]
  10. Blanc-Valleron, M.M., Pierre, C. et al.
    2002. Sedimentary, stable isotope and micropaleontological records 460 of paleoceanographic change in the Messinian Tripoli Formation (Sicily, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 255–286.
    [Google Scholar]
  11. Broquet, P., Mascle, G., Monnier, M.
    1984. La formation à tripolis du bassin de Caltanissetta (Sicile). Revue de Geologie Dynamique et de Geographie Physique, 25, 87–98.
    [Google Scholar]
  12. Butler, R.W.H., Grasso, M.
    1993. Tectonic controls on base level variations and depositional sequences within thrust-top and foredeep basins:examples from the Neogene thrust belt of central Sicily. Basin Research, 5, 137–151.
    [Google Scholar]
  13. Butler, R.W.H., Lickorish, W.H., Grasso, M., Pedley, H.M., Ramberti, L.
    1995. Tectonics and sequence stratigraphy in Messinian basins, Sicily: constraints on the initiation and termination of the Mediterranean ‘salinity crisis’. Geological Society of America Bulletin, 107, 425–439.
    [Google Scholar]
  14. Butler, R.W.H., Maniscalco, R., Sturiale, G., Grasso, M., et al.
    2014. Stratigraphic variations control deformation patterns in evaporite basins: Messinian examples, onshore and offshore Sicily (Italy). Journal of the Geological Society, London, 172, 113–124, http://doi.org/10.1144/jgs2014-024
    [Google Scholar]
  15. Caruso, A.
    1999. Biostratigrafia, Ciclostratigrafia e Sedimentologia dei Sedimenti Tripolacei e Terrigeni del Messiniano Inferiore, affioranti nel Bacino di Caltanissetta (Sicilia) e nel Bacino di Lorca (Spagna). PhD thesis, Palermo-Napoli University.
    [Google Scholar]
  16. Caruso, A., Pierre, C., Blanc-Valleron, M.M. & Rouchy, J.M.
    2015. Carbonate deposition and diagenesis in evaporitic environments: The evaporative and sulphur-bearing limestones during the settlement of the Messinian Salinity Crisis in Sicily and Calabria. Palaeogeography, Palaeoclimatology, Palaeoecology, 429, 136–162.
    [Google Scholar]
  17. Catalano, R., D'Argenio, B. & Torelli, L.
    1989. A geologic section from Sardinia Channel to Sicily Strait based on seismic and field data. In: Boriani, A., Bonafede, M., Piccardo, G.B. & VaiG.B. (eds) The Lithosphere in Italy: Advances in Earth Science Research. Proceedings of the Convegni Lincei, ALC-80. Academia dei Lincei, Rome, 109–127.
    [Google Scholar]
  18. Catalano, R., Infuso, S. & Sulli, A.
    1993. The Pelagian foreland and its northward Foredeep. Plio-Pleistocene structural evolution. In: Max, M.D. & Colantoni, P. (eds) Geological Development of the Sicilian Tunisian Platform. UNESCO Reports in Marine Science, 58, 37–42.
    [Google Scholar]
  19. Catalano, R., Di Stefano, P., Sulli, A. & Vitale, F.P.
    1996. Paleogeography and structure of the central Mediterranean: Sicily and its offshore area. Tectonophysics, 260, 291–323.
    [Google Scholar]
  20. Catalano, R., Lena, G. et al.
    2010. Studio della Formazione dei Tripoli bituminosi. Unpublished Report. Università degli Studi, Palermo.
    [Google Scholar]
  21. Catalano, R., Valenti, V. et al.
    2013. Sicily's fold-thrust belt and slab roll-back; the SI.RI.PRO. seismic crustal transect. Journal of the Geological Society, London, 170, 451–464, http://doi.org/10.1144/jgs2012-099
    [Google Scholar]
  22. Chiarabba, C., De Gori, P. & Speranza, F.
    2008. The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution. Earth and Planetary Science Letters, 268, 408–423.
    [Google Scholar]
  23. CIESM
    CIESM. 2008. The Messinian salinity crisis from mega-deposits to microbiology. In: Briand, F. (ed.). A consensus report.33ème CIESM Workshop, Monaco, Monographs, 33, 1–168.
    [Google Scholar]
  24. Decima, A. & Wezel, F.C.
    1971. Osservazioni sulle evaporiti messiniane della Sicilia centro- meridionale. Rivista Mineraria Siciliana, 130–132, 172–187.
    [Google Scholar]
  25. Doglioni, C.
    1991. A proposal for the kinematic modelling of W-dipping subductions. Possible applications to the Tyrrhenian Apennines system. Terra Nova, 3, 423–434.
    [Google Scholar]
  26. Doglioni, C., Fernandez, M., Gueguen, E. & Sabat, F.
    1998. On the interference between the early Apennines–Maghrebides backarc extension and the Alps-Betics orogen in the Neogene Geodynamics of the Western Mediterranean. Bollettino della Società Geologica Italiana e del Servizio Geologico d'Italia, 118, 75–89.
    [Google Scholar]
  27. Finetti, I.
    (ed.). 2005. CROP Project: Deep Seismic Exploration of the Central Mediterranean and Italy. Atlases in Geoscience, Volume 1. Elsevier, Amsterdam.
    [Google Scholar]
  28. Flores, J.A., Sierro, F.J.
    1987. Calcareous plankton in the Tortonian Messinian transition series of the north-western edge of the Guadalquivir Basin (SW Spain). In: Proceedings of the International Nannoplankton Association Meeting, Vienna, 1985. Abhandlungen der Geologischen Bundesanstalt, 39, 67–84.
    [Google Scholar]
  29. Flores, J.-A., Bárcena, M.A., Sierro, F.J.,
    2000. Ocean-surface and wind dynamics in the Atlantic Ocean off Northwest Africa during the last 140 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 459–478, http://doi.org/10.1016/S0031-0182(00)00099-7
    [Google Scholar]
  30. Gasparo Morticelli, M., Valenti, V., et al.
    2015. Deep controls on foreland basin system evolution along the Sicilian fold and thrust belt. In: Seranne, M., Lamarche, J. & Agosta, F. (eds) Lithosphere Dynamics of Sedimentary Basins: The Circum-Mediterranean Basins and Analogues. Bulletin de la Société Géologique de France, 186, (4–5), 273–290, http://doi.org/10.2113/gssgfbull.186.4-5.273
    [Google Scholar]
  31. Ghisetti, F.C., Gorman, A.R., Grasso, M., Vezzani, L.
    , 2009. Imprint of foreland structure on the deformation of a thrust sheet. The Plio-Pleistocene Gela Nappe (southern Sicily, Italy). Tectonics, 28, TC4015, http://doi.org/10.1029/2008TC002385
    [Google Scholar]
  32. Giunta, B.
    1953. Tripoli bituminosi in Sicilia. Rivista Mineraria Siciliana, 22–23.
    [Google Scholar]
  33. Grasso, M. & Pedley, H.M.
    1988. The sedimentology and development of Terravecchia Formation carbonates (Upper Miocene) of north-central Sicily: possible eustatic influence on facies development. Sedimentary Geology, 57, 131–149.
    [Google Scholar]
  34. Haq, B.U.
    1980. Biogeographic history of miocene calcarous nannoplankton and paleoceanography of the Atlantic Ocean. Micropaleontology,26, 414–443.
    [Google Scholar]
  35. Hilgen, F.J. & Krijgsman, W.
    1999. Cyclostratigraphy and astrochronology of the Tripoli diatomite formation (pre-evaporite Messinian, Sicily, Italy). Terra Nova, 11, 16–22.
    [Google Scholar]
  36. Hilgen, F.J, Kuiper, K., Krijgsman, W., Snel, E., Van Der Laan, E.
    2007. Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis. Stratigraphy, 4, 231–238.
    [Google Scholar]
  37. Hoffmann, F.
    1832. Uber die geognistische Beschaffenheit der Liparischen Inseln. Barth, Leipzig.
    [Google Scholar]
  38. Hsü, K.J., Cita, M.B. & Ryan, W.B.F.
    1973. The origin of the Mediterranean evaporites. In: Ryan, W.B., Hsü, K.J. et al. (eds) Initial Reports of the Deep Sea Drilling Project, Volume XIII. United States Government Printing Office, Washington, DC, 1203–1231.
    [Google Scholar]
  39. Iaccarino, S.
    1985. Mediterranean Miocene and Pliocene planktic foraminifera. In: Bolli, H.M., Saunders, J.B. & Perch-Nielsen, K. (eds) Plankton Stratigraphy, I, Planktic Foraminifera, Calcareous Nannoplankton and Calpionellids. Cambridge University Press, Cambridge, 283–314.
    [Google Scholar]
  40. Kouwenhoven, T.J., Seidenkrantz, M.S. & van der Zwaan, G.J.
    1999. Deep-water changes: the near-synchronous disappearance of a group of benthic foraminifera from the Late Miocene Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 259–281.
    [Google Scholar]
  41. Kouwenhoven, T.J., Morigi, C., Negri, A., Giunta, S., Krijgsman, W. & Rouchy, J.-M.
    2006. Paleoenvironmental evolution of the eastern Mediterranean during the Messinian: Constrints from integrated microfossil data of the Pissouri Basin (Cyprus). Marine Micropaleontology, 60, 17–44.
    [Google Scholar]
  42. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S.
    1999. Chronology, causes, progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  43. Krijgsman, W., Gaboardi, S., Hilgen, F.J., Iaccarino, S., de Kaenel, E., van der Laan, E.
    2004. Revised astrochronology for the Ain el Beida section (Atlantic Morocco): no glacioeustatic control for the onset of the Messinian Salinity Crisis. Stratigraphy, 1, 87–101.
    [Google Scholar]
  44. Lentini, F., Carbone, S. & Catalano, S.
    1994. Main structural domains of the central Mediterranean region and their tectonic evolution. Bollettino di Geofisica Teorica ed Applicata, 36, 103–125.
    [Google Scholar]
  45. Lickorish, W.H., Grasso, M., Butler, R.W.H., Argnani, A. & Maniscalco, R.
    1999. Structural styles and regional tectonic setting of the “Gela Nappe” and frontal part of the Maghrebian thrust belt in Sicily. Tectonics, 18, 655–668.
    [Google Scholar]
  46. Londeix, L., Benzakour, M., Suc, J.P. & Turon, J.L.
    2007. Messinian palaeoen-vironments and hydrology in Sicily (Italy): The dinoflagellate cyst record. Geobios, 40, 233–250.
    [Google Scholar]
  47. Manzi, V., Roveri, M. et al.
    2007. The deep-water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: the Fanantello section, Northern Apennines, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 470–499.
    [Google Scholar]
  48. Manzi, V., Lugli, S., Roveri, M., Schreiber, B.C., Gennari, R.
    2011. The Messinian ‘Calcare di Base’ (Sicily, Italy) revisited. GSA Bulletin, 123, 347–370.
    [Google Scholar]
  49. McKenzie, J.A., Jenkyns, H.C. & Bennett, G.G.
    1979. Stable isotope study of the cyclic diatomite– claystones from the Tripoli formation, Sicily: a prelude to the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 29, 125–142.
    [Google Scholar]
  50. Molfino, B. & McIntyre, A.
    1990. Precessional forcing of nutricline dynamics in the equatorial atlantic. Science, 249, 766–769.
    [Google Scholar]
  51. Mottura, S.
    1871. Sulla formazione terziaria nella zona zolfifera della Sicilia. Memorie Regio Comitato Geologico d'Italia, 1, 50–140.
    [Google Scholar]
  52. Nigro, F. & Renda, P.
    2000. Un modello di evoluzione tettono-sedimentaria dell'avanfossa neogenica siciliana. Bollettino della Società Geologica Italiana e del Servizio Geologico d'Italia, 119, 667–686.
    [Google Scholar]
  53. Ogniben, L.
    1957. Petrografia della serie Solfifera Siciliana e considerazioni geologiche relative. Memorie descrittive della carta geologica d'Italia, 33.
    [Google Scholar]
  54. Oldow, J.S., Channel, J.E.T., Catalano, R. & D'Argenio, B.
    1990. Contemporaneous thrusting and large-scale rotations in the western Sicilian fold and thrust belt. Tectonics, 9, 661–681.
    [Google Scholar]
  55. Pedley, H.M. & Grasso, M.
    1993. Controls on faunal and sediment cyclicity within the Tripoli and Calcare di Base basins (Late Miocene) of central Sicily. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 337–360.
    [Google Scholar]
  56. Perch-Nielsen, K.
    1985. Cenozoic calcareous nannofossils. In: Bolli, H.M., Saunders, J.B. & Perch-Nielsen, K. (eds) Plankton Stratigraphy. Cambridge University Press, Cambridge, 427–554.
    [Google Scholar]
  57. Raffi, I., Mozzato, C., Fornaciari, E., Hilgen, F.J. & Rio, D.
    2003. Late Miocene calcareous nannofossil biostatigraphy and astrobiochronology for the Mediterranean region. Micropaleontology, 49, 1–26, http://doi.org/10.1661/0026-2803(2003)049[0001:LMCNBA]2.0.CO;2
    [Google Scholar]
  58. Rouchy, J.M. & Caruso, A.
    2006. The Messinian salinity crisis in the Mediterranean basin: a reappraisal of the data and an integrated scenario. In: Rouchy, J.M., Suc, J.P., Ferrandini, J. & Ferrandini, M. (eds) The Messinian Salinity Crisis Revisited. Sedimentary Geology, 188–189, 35–68.
    [Google Scholar]
  59. Roveri, M. & Manzi, V.
    2006. The Messinian salinity crisis: looking for a new paradigm?Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 386–398.
    [Google Scholar]
  60. Roveri, M., Lugli, S., Manzi, V. & Schreiber, B.C.
    2008. The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis. Terra Nova, 20, 483–488.
    [Google Scholar]
  61. Sprovieri, R., Di Stefano, E., Caruso, A., Bonomo, S.
    1996. High resolution stratigraphy in the Messinian Tripoli Formation in Sicily. Paleopelagos, 6, 415–435.
    [Google Scholar]
  62. Suc, J.-P., Violanti, D. et al.
    1995. Evolution of the Messinian Mediterranean environments: the Tripoli Formation at Capodarso (Sicily, Italy). Review of Palaeobotany and Palynology, 87, 51–79.
    [Google Scholar]
  63. Valenti, V.
    2010. Shallow structures at the outer Calabrian accretionary wedge (NW Ionian Sea): new insights from recently migrated reflection data”. Terra Nova, 22, (6), 453–466, http://doi.org/10.1111/j.1365-3121.2010.00964.x
    [Google Scholar]
  64. 2011. New insights from recently migrated CROP multichannel seismic data at the outermost Calabrian Arc accretionary wedge (Ionian Sea). Italian Journal of Geosciences, 130, (3), 330–342, http://doi.org/10.3301/IJG.2011.05
    [Google Scholar]
  65. Wade, B.S. & Bown, P.R.
    2006. Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeogeography, Palaeoclimatology, Palaeoecology, 233, 271–286.
    [Google Scholar]
  66. Young, J.R.
    1998. Neogene nannofossils. In: Bown, P.R. (ed.) Calcareous Nannofossil Biostratigraphy. Kluwer Academic, Dordrecht, 225–265.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-006
Loading
/content/journals/10.1144/petgeo2016-006
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error