1887
Volume 22, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Newly acquired 3D seismic datasets over the Eastern Mediterranean Basin are used to image the massive Messinian salt body. Accurate imaging of this salt body is critical to the precise definition of the prospective pre-salt geological section. The availability of recent well logs, which are the only ones to date to have penetrated the entire Messinian salt sequence, enables a clear definition of the highly deformed clastic units within the salt. This study shows that these highly reflective clay units cause a significant reduction in the overall seismic velocity of the salt. It also demonstrates why 3D pre-stack depth migration, including a tomographical velocity update inside the salt body, is recommended as the preferred imaging technique.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2015-088
2016-08-17
2024-04-16
Loading full text...

Full text loading...

References

  1. Ben-Avraham, Z.
    1978. The structure and tectonic setting of the Levant continental margin, Eastern Mediterranean. Tectonophysics, 46, 313–331.
    [Google Scholar]
  2. Bertoni, C. & Cartwright, J.A.
    2006. Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (eastern Mediterranean). Sedimentary Geology, 188, 93–114.
    [Google Scholar]
  3. Cartwright, J.A. & Jackson, M.P.A.
    2008. Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Geological Society of America Bulletin, 120, 399–413.
    [Google Scholar]
  4. Cartwright, J., Jackson, M., Dooley, T. & Higgins, S.
    2012. Strain partitioning in gravity-driven shortening of a thick, multilayered evaporite sequence. In: Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T. & Hodgkinson, R. (eds) Salt Tectonics, Sediments and Prospectivity. Geological Society, London, Special Publications, 363, 449–470, http://doi.org/10.1144/SP363.21
    [Google Scholar]
  5. Feng, Y.E., Yankelzon, A., Stainberg, J. & Reshef, M.
    2016. Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118–131, http://doi.org/10.1016/j.margeo.2016.04.004
    [Google Scholar]
  6. Gardosh, M.A. & Tannenbaum
    2014. The petroleum systems of Israel. In: Marlow, L., Kendall, C. & Yose, L. (eds) Petroleum Systems of the Tethyan Region. American Association of Petroleum Geologists, Memoirs, 298, 179–216.
    [Google Scholar]
  7. Gardosh, M.A., Druckman, Y., Buchbinder, B. & Rybakov, M.
    2008. The Levant Basin Offshore Israel: Stratigraphy, Structure, Tectonic Evolution and Implications for Hydrocarbon Exploration. Israel Geological Survey Report GSI/4/2008, http://energy.gov.il/Subjects/OilSearch/Documents/LevantBasinOffshoreIsrael2008.pdf
    [Google Scholar]
  8. Garfunkel, Z.
    1998. Constraints on the origin and history of the Eastern Mediterranean basin. Tectonophysics, 298, 5–35.
    [Google Scholar]
  9. Garfunkel, Z., Arad, A. & Almagor, G.
    1979. The Palmahim Disturbance and its Regional Setting. Geological Survey of Israel Bulletin, 72.
    [Google Scholar]
  10. Gradmann, S., Hubscher, C., Ben-Avraham, Z., Gajewski, D. & Netzeband, G.
    2005. Salt tectonics off northern Israel. Marine and Petroleum Geology, 22, 597–611.
    [Google Scholar]
  11. Gvirtzman, Z., Reshef, M., Buch-Leviatan, O. & Ben-Avraham, Z.
    2013. Intense salt deformation in the Levant Basin in the middle of the Messinian salinity crisis. Earth and Planetary Science Letters, 379, 108–119.
    [Google Scholar]
  12. Hsu, K.J., Ryan, W.B.F. & Cita, M.B.
    1973. Late Miocene desiccation of Mediterranean. Nature, 242, 240–244.
    [Google Scholar]
  13. Hsu, K.J., Montadert, L. et al.
    1977. History of Mediterranean salinity crisis. Nature, 267, 399–403.
    [Google Scholar]
  14. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S.
    1999. Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  15. Lofi, J., Sage, F. et al.
    2011. Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi-site seismic analysis. Bulletin de la Société Géologique de France, 182, 163–180.
    [Google Scholar]
  16. Netzeband, G.L., Huebscher, C.P. & Gajewski, D.
    2006. The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230, 249–273.
    [Google Scholar]
  17. Reiche, S., Huebscher, C. & Beitz, M.
    2014. Fault-controlled evaporite deformation in the Levant Basin, eastern Mediterranean. Marine Geology, 354, 53–68.
    [Google Scholar]
  18. Robertson, A.H.F.
    1998. Tectonic significance of the Eratosthenes Seamount: a continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160). Tectonophysics, 29, 863–882.
    [Google Scholar]
  19. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V. et al.
    2014. The Messinian salinity crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58.
    [Google Scholar]
  20. Ryan, W.B.F., Cita, M.B. & Hsu, J.K.
    1973. Initial Reports of the Deep Sea Drilling Project, Volume 13. United States Government Printing Office, Washington, DC.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2015-088
Loading
/content/journals/10.1144/petgeo2015-088
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error