1887
Volume 14 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

This paper focuses on the development and validation of an innovative method for estimating volumetric water content in concrete mixtures. A supervised learning method (support vector machine) has been used to resolve the inverse problem, i.e., generate in‐laboratory calibration curves correlating the controlled water content in various concrete mixtures with the frequency‐dependent complex dielectric permittivity originating from the coaxial electromagnetic transition line. An extrapolation procedure using a frequency‐power‐law model has been developed and validated for estimating the complex permittivity over a broad frequency bandwidth. Implementation of this extrapolation method allows considering various physical phenomena (i.e., polarisation versus water content) that typically affect the dielectric behaviour of concrete as a function of frequency. The two‐step estimation procedure (involving extrapolation and support vector regression methods) proposed in this paper has been validated on a wide array of moisture‐controlled concrete specimens in the laboratory. The procedure helps building calibration curves that rely on both complex effective permittivity and volumetric water content, taking into consideration the frequency dependence.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016045
2016-10-01
2024-03-28
Loading full text...

Full text loading...

References

  1. AdousM., QuéffélecP. and LaguerreL.2006. Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials. Measurement Science and Technology17, 2241–2246.
    [Google Scholar]
  2. AFPC‐AFREM
    AFPC‐AFREM . 1997. Méthodes recommandées pour la mesure des grandeurs associées à la durabilité. Journées Techniques AFPCAFREM sur la Durabilité des Bétons.Toulouse, France.
    [Google Scholar]
  3. Baroghel‐BounyV. et al. 2007. Concrete design for structures with predefined service life–durability control with respect to reinforcement corrosion and alkali–silica reaction, state‐of‐the art and guide for implementation of a performance‐type and predictive approach based upon durability indicators. Documents Scientifiques et Techniques de l’AFGC.Bagneux, France: AFGC, 252p (French version published in 2004).
    [Google Scholar]
  4. BoisK., BenallyA. and ZoughiR.2000. Microwave near‐field reflection property analysis of concrete for material content determination. IEEE Transactions on Instrumentation and Measurement49, 49–55.
    [Google Scholar]
  5. BoisK., BenallyA., NowakP. and ZoughiR.1998. Cure‐state monitoring and water‐to‐cement ratio determination of fresh Portland cement based materials using near field microwave techniques. IEEE Transactions on Instrumentation and Measurement47, 628–637.
    [Google Scholar]
  6. BruggemanD.1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik416, 636–664.
    [Google Scholar]
  7. CaorsiS. and GambaP.1999. Electromagnetic detection of dielectric cylinders by a neural network approach. IEEE Transactions on Geosciences and Remote Sensing37(2), 820–827.
    [Google Scholar]
  8. CaorsiS. and CeviniG.2005. An electromagnetic approach based on neural networks for the GPR investigation of buried cylinders. IEEE Geoscience and Remote Sensing Letters2(1), 3–7.
    [Google Scholar]
  9. CaorsiS. and StasollaM.2010. Electromagnetic infrastructure monitoring: the exploitation of GPR data and neural networks for multi‐layered geometries. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, pp. 4717–4720.
    [Google Scholar]
  10. ChalimourdaA., SchölkopfB. and SmolaA.2004. Experimentally optimal v in support vector regression for different noise models and parameter settings. Neural Networks17(1), 127–141.
    [Google Scholar]
  11. ChangC. and LinC.2002. Training v‐support vector regression: theory and algorithms. Neural Computation14(8), 1959–1977.
    [Google Scholar]
  12. DérobertX.2010. Capacimetry. In: Non‐destructive Evaluation of Reinforced Concrete Structures, Vol. 2. Cambridge, UK: Woodhead Publishing Ltd.
    [Google Scholar]
  13. DérobertX., VillainG., CortasR. and ChazelasJ.2009. EM characterization of hydraulic concretes in the GPR frequency band using a quadratic experimental design. International Symposium Non‐Destructive Testing in Civil Engineering,177–182.
    [Google Scholar]
  14. GillM., AsefaT., KemblowskiM. and MackeeM.2006. Soil moisture prediction using support vector machines. Journal of the American Water Resources Association42(4), 1033–1046.
    [Google Scholar]
  15. HsuC., ChangC. and LinC.2016. A Practical Guide to Support Vector Classification. Available on https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
  16. HugenschmidtJ. and LoserR.2008. Detection of chlorides and moisture in concrete structures with ground penetrating radar. Materials and Structures41(4), 785–792.
    [Google Scholar]
  17. IhamoutenA., VillainG. and DérobertX.2012. Complex permittivity frequency variations from multi‐offset GPR data: hydraulic concrete characterization. IEEE Transactions on Instrumentation and Measurement61(6), 1636–1648.
    [Google Scholar]
  18. IhamoutenA., ChahineK., BaltazartV., VillainG. and DérobertX.2011. On variants of the frequency power law for the electromagnetic characterization of hydraulic concrete. IEEE Transactions on Geosciences and Remote Sensing60, 3658–3668.
    [Google Scholar]
  19. JamilM., HassanM.K., Al‐MattarnehH.M.A. and ZainM.F.M.2013. Concrete dielectric properties investigation using microwave nondestructive techniques. Materials and Structures46, 77–87.
    [Google Scholar]
  20. KalogeropoulosA., Van der KrukJ., HugenschmidtJ., BuschS. and MerzK.2011. Chlorides and moisture assessment in concrete by GPR full waveform inversion. Near Surface Geophysics9, 277–286.
    [Google Scholar]
  21. KlyszG. and BalayssacJ.P.2007. Determination of volumetric water content of concrete using ground‐penetrating radar. Cement and Concrete Research37(8), 1164–1171.
    [Google Scholar]
  22. LaurensS., BalayssacJ.P., RhaziJ., KlyszG. and ArliguieG.2005. Nondestructive evaluation of concrete moisture by GPR: experimental study and direct modeling. Materials and Structures38, 827–832.
    [Google Scholar]
  23. Le BastardC., WangY., BaltazartV. and DérobertX.2014. Time delay and permittivity estimation by ground penetrating radar with support vector regression. IEEE Geoscience and Remote Sensing Letters11(4), 873–877.
    [Google Scholar]
  24. Maxwell GarnettJ.C.1904. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences203, 385–420.
    [Google Scholar]
  25. PasolliE., MelganiF. and DonelliM.2009. Automatic analysis of GPR images: a pattern‐recognition approach. IEEE Geoscience and Remote Sensing Letters47(7), 2206–2217.
    [Google Scholar]
  26. RobertA.1998. Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. Journal of Applied Geophysics40, 89–94.
    [Google Scholar]
  27. SbaraiZ.M., LaurensL., ViriyametanontK., BalayssacJ.P. and ArliguieG.2009. Non‐destructive evaluation of concrete physical condition using radar and artificial neural networks. Construction and Building Materials23, 837–845.
    [Google Scholar]
  28. SchölkopfB., SmolaA., WilliamsonR. and BartlettP.2000. New support vector algorithms. Neural Computation12(5), 1207–1245.
    [Google Scholar]
  29. ShaariA., MillardS.G. and BungeyJ.H.2004. Modelling the propagation of a radar signal through concrete as a low‐pass filter. NDT & E International37, 237–242.
    [Google Scholar]
  30. ShaoW., BouzerdoumA., PhungS., SuL., IndraratnaB. and RujikiatkamjornC.2011. Automatic classification of ground penetrating radar signals for railway ballast assessment. IEEE Transactions on Geosciences and Remote Sensing49(10), 3961–3972.
    [Google Scholar]
  31. SihvolaH.1989. Self‐consistency aspects of dielectric mixing theories. IEEE Transactions on Geosciences and Remote Sensing27, 403–415.
    [Google Scholar]
  32. SmolaA. and SchölkopfB.2004. A tutorial on support vector regression. Statistics and Computing14(3), 199–222.
    [Google Scholar]
  33. Torres‐LuqueM., Bastidas‐ArteagaE., SchoefsF., Sánchez‐SilvaM. and OsmaJ.F.2014. Non‐destructive methods for measuring chloride ingress into concrete: state‐of‐the‐art and future challenges. Construction and Building Materials68, 68–81.
    [Google Scholar]
  34. VapnikV.1995. The Nature of Statistical Learning Theory.New York, NY: Springer‐Verlag.
    [Google Scholar]
  35. VapnikV.1999. An overview of statistical learning theory. IEEE Transactions on Neural Networks10(5), 988–999.
    [Google Scholar]
  36. VillainG. and ThieryM.2006. Gammadensimetry: a method to determine drying and carbonation profiles in concrete. NDT & E International Journal39, 328–337.
    [Google Scholar]
  37. VillainG., SbartaïZ.M., DérobertX., GarnierV. and BalayssacJ.P.2012. Durability diagnosis of a concrete structure in a tidal zone by combining NDT methods: laboratory tests and case study. Construction and Building Materials37, 893–903.
    [Google Scholar]
  38. VillainG., IhamoutenA., du PlooyR., Palma LopesS. and DérobertX.2015. Use of electromagnetic non‐destructive techniques for monitoring water and chloride ingress into concrete. Near Surface Geophysics13(3), 299–309.
    [Google Scholar]
  39. VillainG., IhamoutenA., DérobertX., SedranT., BurbanO., CoffecO. et al. 2010. Adapted mix design and characterization for non destructive assessment of concrete. Proceedings of the International Symposium MEDACHS10,LaRochelle, France, pp. 28–30.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016045
Loading
/content/journals/10.3997/1873-0604.2016045
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error