1887
Volume 28, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The thrust sheets of the Northern Calcareous Alps were emplaced during Late Cretaceous thrust‐dominated transpression expressed by thrust sheets segmented by closely spaced tear faults. Thrust sheet‐top sediments were deposited during thrusting and associated fold growth and were controlled by active folding and tearing. We observe two types of angular unconformities: (1) Angular unconformities above folds between tear faults conform with the model of progressive unconformities. Across these unconformities dip decreases upsection. (2) Here, we define progressive unconformities that are related to tear faults and are controlled by both folding and tearing. Across these unconformities both strike and dip change. In growth strata overlying folds dissected by high‐angle faults, such unconformities are expected to be common. We used analogue modelling to define the geometry of the tear faults and related unconformities. Within the syn‐tectonic sediments, a steep, upward flattening thrust within a broader, roughly tulip‐shaped drag zone develops. The thrust roots in the tear fault in pre‐tectonic deposits and is curved upward toward the downthrown block. Vertical offset on the thrust is related to differential vertical uplift caused by, for example, growth of folds with different wavelength and amplitude on either side of the tear fault. Formation of progressive unconformities is governed by the relationship between the rates of deposition and vertical growth of a structure. Fault‐related progressive unconformities are additionally controlled by the growth of the vertical step across the tear fault. When the rates of vertical growth of two neighbouring folds separated by a tear fault are similar, the rate of growth across the tear fault is small; if the first differ, the latter is high. Episodic tear fault activity may create several angular unconformities attached to a tear fault or allow the generation of angular unconformities near tear faults in sedimentary systems that have a rate of deposition too high to generate classical progressive unconformities between the tear faults.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12129
2015-04-20
2024-03-29
Loading full text...

Full text loading...

References

  1. Affolter, T. & Gratier, J.‐P. (2004) Map view retrodeformation of an arcuate fold‐and‐thrust belt: The Jura Case. J. Geophys. Res., 109(B3), B03404.
    [Google Scholar]
  2. Amerman, R. (2009) Deepwater mass‐transport deposits: Structure, stratigraphy, and implications for basin evolution. unpubl. PhD Thesis, Colorado School of Mines, Golden.
  3. Anadon, P., Cabrera, L., Colombo, F., Marzo, M. & Riba, O. (1986) Syntectonic unconformities in alluvial fan deposits, Eastern Ebro Basin Margins (Ne Spain). In: Foreland Basins, Spec. Publ. Int. Ass. Sediment. No. 8 (Ed. by P.A.Allen , P.Homewood ), pp. 259–271. Blackwell, Oxford.
    [Google Scholar]
  4. Barrier, L., Nalpas, T., Gapais, D., Proust, J.N., Casas, A. & Bourquin, S. (2002) Influence of syntectonic sedimentation on thrust geometry. Field examples from the Iberian Chain (Spain) and analogue modelling. Sed. Geol., 146, 91–104.
    [Google Scholar]
  5. Braun, J. & Beaumont, C. (1995) Three‐dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the Southern Coast Ranges, California, and Central South Island, New Zealand. J. Geophys. Res.: Solid Earth, 100, 18059–18074.
    [Google Scholar]
  6. Burbrigde, D.R. & Braun, J. (1998) Analogue models of obliquely convergent continental plate boundaries. J. Geophys. Res., 103(B7), 15221–15237.
    [Google Scholar]
  7. Butt, A. (1981) Depositional environments of the upper cretaceous rocks in the Northern Part of the Eastern Alps. Cush. Found. Spec. Pub., 20, 5–121.
    [Google Scholar]
  8. Butt, A. & Herm, D. (1978) Paleo – Oceanographic aspects of the upper cretaceous geosynclinal sediments of the Eastern Alps. In: Alps, Apennines, Hellenides: Geodynamic Investigations Along Geotraverses by an International Group of Scientists (Ed. by H.Closs , D.Roeder & K.Schmidt ), pp. 87–94. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart.
    [Google Scholar]
  9. Caputo, R., Poli, M.E. & Zanferrari, A. (2010) Neogene quaternary tectonic stratigraphy of the Eastern Southern Alps, Ne Italy. J. Struct. Geol., 32, 1009–1027.
    [Google Scholar]
  10. Casas, A.M., Gapais, D., Nalpas, T., Besnard, K. & Román‐Berdiel, T. (2001) Analogue models of transpressive systems. J. Struct. Geol., 23, 733–743.
    [Google Scholar]
  11. Castellarin, A. & Cantelli, L. (2000) Neo‐Alpine evolution of the Southern Eastern Alps. J. Geodyn., 30, 251–274.
    [Google Scholar]
  12. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  13. Deramond, J., Souquet, P., Fondecave‐Wallez, M.‐J. & Specht, M. (1993) Relationships between thrust tectonics and sequence stratigraphy surfaces in Foredeeps: Model and examples from the Pyrenees (Cretaceous to Eocene, France, Spain). In: Tectonics and Seismic Sequence Stratigraphy (Ed. by WilliamsG. D. & DobbA. ), Spec. Publ. Geol. Soc. London No. 71, 193–219, London.
    [Google Scholar]
  14. Doglioni, C. (1992) The Venetian Alps Thrust Belt. In: Thrust Tectonics (Ed. by KRMcClay ), pp. 319–324. Chapman & Hall, London.
    [Google Scholar]
  15. Eisbacher, G.H. & Brandner, R. (1996) Superposed fold thrust structures and high angle faults, Northwestern Calcareous Alps, Austria. Eclog. Geolog. Helvet., 89, 553–571.
    [Google Scholar]
  16. Eisbacher, G.H., Linzer, G.‐H. & Meier, L. (1990) A depth extrapolated structural transect across the Northern Calcareous Alps of Western Tirol. Eclog. Geolog. Helvet., 83, 711–725.
    [Google Scholar]
  17. Evans, M.J. & Elliott, T. (1999) Evolution of a thrust‐sheet‐top basin: The Tertiary Baremme Basin, Alpes‐De‐Haute‐Provence, France. Geol. Soc. Am. Bull., 111, 1617–1643.
    [Google Scholar]
  18. Ford, M., Williams, E.A., Artoni, A., Verges, J. & Hardy, S. (1997) Progressive evolution of a fault‐related fold pair from growth strata geometries, Sant Llorens De Morunys, Se Pyrenees. J. Struct. Geol., 19, 413–441.
    [Google Scholar]
  19. Frank, W. (1987) Evolution of the Austroalpine Elements in the Cretaceous. In: Geodynamics of the Eastern Alps (Ed. by HWFlügel , PFaupl ), pp. 379–406. Deuticke, Wien.
    [Google Scholar]
  20. Froitzheim, N., Schmid, S.M. & Frey, M. (1996) Mesozoic paleogeography and the timing of eclogite‐facies metamorphism in the Alps: A working hypothesis. Eclogae Geol. Helv., 89, 81–110.
    [Google Scholar]
  21. Froitzheim, N., Conti, P. & Van Daalen, M. (1997) Late cretaceous, synorogenic, low‐angle normal faulting along the Schlinig Fault (Switzerland, Austria) and its significance for the tectonics of the Eastern Alps. Tectonophysics, 280, 267–293.
    [Google Scholar]
  22. Gawthorpe, R. & Hardy, S. (2002) Extensional fault‐propagation folding and base‐level change as controls on growth‐strata geometries. Sed. Geol., 146, 47–56.
    [Google Scholar]
  23. Graveleau, F., Malavieille, J. & Dominguez, S. (2012) Experimental modelling of orogenic wedges: A review. Tectonophysics, 538–540, 1–66.
    [Google Scholar]
  24. Hesse, R. & Butt, A. (1976) Paleobathymetry of cretaceous turbidite basins of the East Alps relative to the calcite compensation level. J. Geol., 84, 505–533.
    [Google Scholar]
  25. Krenmayr, H.‐G. (1999) Die Nierental‐Formation der oberen Gosau‐Gruppe (Oberkreide–Paleozän, Nördliche Kalkalpen) in Berchtesgaden: Definition, Fazies und Environment. Jahrb. Geol. Bundesanst, 141, 409–447.
    [Google Scholar]
  26. Lawton, T.E., Roca, E. & Guimera, S. (1999) Kinematic and stratigraphic evolution of a growth syncline and its implications for tectonic development of the proximal foreland basin, Southeastern Ebro Basin, Catalunya, Spain. AAPG Bull., 111, 412–431.
    [Google Scholar]
  27. Leever, K. A., Gabrielsen, R. H., Faleide, J. I. & Braathen, A. (2011a) A transpressional origin for the West Spitsbergen fold‐and‐thrust belt: Insight from Analog Modeling. Tectonics, 30, TC2014.
    [Google Scholar]
  28. Leever, K.A., Gabrielsen, R.H., Sokoutis, D. & Willingshofer, E. (2011b) The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high‐resolution digital image analysis. Tectonics, 30, TC2013.
    [Google Scholar]
  29. Lickorish, W.H. & Ford, M. (1998) Sequential restoration of the external Alpine Digne Thrust System, Se France, constrained by kinematic data and synorogenic sediments. In: Cenozoic Foreland Basins of Western Europe (Ed. by MascleA. , PuigdefábegrasC. , LuterbacherH.P. & FernãndezM .) Spec. Publ. Geol. Soc. No. 134, 189–211, London.
    [Google Scholar]
  30. Linzer, H.‐G., Ratschbacher, L. & Frisch, W. (1995) Transpressional collision structures in the upper crust: The fold thrust belt of the Northern Calcareous Alps. Tectonophysics, 242, 41–61.
    [Google Scholar]
  31. Lowell, J.D. (1972) Spitsbergen tertiary orogenic belt and the Spitsbergen fracture zone. Geol. Soc. Am. Bull., 83, 3091–3102.
    [Google Scholar]
  32. Masaferro, J.L., Bulnes, M., Poblet, J. & Eberli, G.P. (2002) Episodic folding inferred from syntectonic carbonate sedimentation: The Santaren Anticline, Bahamas Foreland. Sed. Geol., 146, 11–24.
    [Google Scholar]
  33. Massari, F., Grandesso, P., Stefani, C. & Jobstraibitzer, P.G. (1986a) A Small Polyhistory Foreland Basin Evolving in the Context of Oblique Convergence: The Venetian Basin, Italy) In: Foreland Basins (Ed. by Spec. Publ. Int. Ass. Sediment. Nr. 8), pp. 141–168. Blackwell, Oxford.
    [Google Scholar]
  34. Massari, F., Grandesso, P., Stefani, C. & Zanferrari, A. (1986b) The oligo‐miocene molasse of the Veneto – Friuli Region, Southern Alps. Giorn. Geol., 48, 235–255.
    [Google Scholar]
  35. Massari, F., Mellere, D. & Doglioni, C. (1993) Cyclicity in non‐marine foreland‐basin sedimentary fill: The Messinian Conglomerate‐Bearing Succession of the Venetian Alps (Italy) In: Alluvial Sedimentation (Ed. by MarzoM. & PuigdefabregasC. ), Spec. Publ. Int. Ass. Sediment. Nr. 17, 501–520. Blackwell, Oxford.
    [Google Scholar]
  36. Medwedeff, D.A. (1989) Growth fault‐bend folding at Southeast Lost Hills, San Joaquin Valley, California. AAPG Bulletin, 73, 54–67.
    [Google Scholar]
  37. Mellere, D., Stefani, C. & Angevine, C. (2000) Polyphase tectonics through subsidence analysis: The oligo‐miocene Venetian and Friuli Basin, North‐East Italy. Basin Res., 12, 159–182.
    [Google Scholar]
  38. Neubauer, F., Genser, J. & Handler, R. (2000) The Eastern Alps: Result of a two stage collision process. Mitt. österr. Geol. Ges., 92, 117–134.
    [Google Scholar]
  39. Norris, R.J. & Cooper, A.F. (1995) Origin of small‐scale segmentation and transpressional thrusting along the Alpine Fault, New Zealand. Geol. Soc. Am. Bull., 107, 231–240.
    [Google Scholar]
  40. Ortner, H. (1994a) Die Muttekopfgosau (Lechtaler Alpen, Tirol/Österreich): Sedimentologie und Beckenentwicklung. Geol. Rundsch., 83, 197–211.
    [Google Scholar]
  41. Ortner, H. (1994b) Die petrographische Entwicklung der Muttekopfgosau (Lechtaler Alpen, Tirol). Zent. für Geol. Paläontol. Teil I, 11(12), 1355–1371.
    [Google Scholar]
  42. Ortner, H. (2001) Growing folds and sedimentation of the Gosau Group, Muttekopf, Northern Calcareous Alps, Austria. Int. J. Earth Sci. (Geol. Rundsch.), 90, 727–739.
    [Google Scholar]
  43. Ortner, H. (2003) Cretaceous thrusting in the Western Part of the Northern Calcareous Alps (Austria) – Evidences from synorogenic sedimentation and structural data. Mitt. österr. Geol. Ges., 94, 63–77.
    [Google Scholar]
  44. Ortner, H. (2007) Styles of soft‐sediment deformation on top of a growing fold system in the Gosau Group at Muttekopf, Northern Calcareous Alps, Austria: Slumping versus tectonic deformation. Sed. Geol., 196, 99–118.
    [Google Scholar]
  45. Ortner, H. & Gaupp, R. (2007) Synorogenic sediments of the Western Northern Calcareous Alps. Geo. Alp, 4, 133–148.
    [Google Scholar]
  46. Ortner, H., Reiter, F. & Acs, P. (2002) Easy handling of tectonic data: The Programs TectonicVB for Mac and TectonicsFP for Windows(Tm). Comput. Geosci., 28, 1193–1200.
    [Google Scholar]
  47. Ortner, H., Aichholzer, S., Zerlauth, M., Pilser, R. & Fügenschuh, B. (2015) Geometry, amount and sequence of thrusting in the Subalpine Molasse of Western Austria and Southern Germany, European Alps. Tectonics, 34, 1–30. doi:10.1002/2014TC003550.
    [Google Scholar]
  48. Paton, D., Carr, M., Trudgill, B., Ortner, H. & Medwedeff, D.A. (2007) Alpine‐Scale 3D geospatial modeling: Applying new techniques to old problems. Geosphere, 3, 527–549.
    [Google Scholar]
  49. Pei, Y., Paton, D.A. & Knipe, R.J. (2014) Defining a 3‐dimensional trishear parameter space to understand the temporal evolution of fault propagation folds. J. Struct. Geol., 66, 284–297.
    [Google Scholar]
  50. Persson, K.S., Garcia‐Castellanos, D. & Soukoutis, D. (2004) River transport effects on compressional belts: First results from an integrated analogue‐numerical model. J. Geophys. Res., B109, B01409.
    [Google Scholar]
  51. Pfiffner, O.A. (1981) Fold‐and‐thrust tectonics in the Helvetic Nappes (E Switzerland). In: Thrust and Nappe Tectonics (Ed. by McClayK. R. & PriceN. J. ) Spec. Publ., 9, 319–327. Geological Society, London.
    [Google Scholar]
  52. Poblet, J., McClay, K., Storti, F. & Munoz, J.A. (1997) Geometries of syntectonic sediments associated with single‐layer detachment folds. J. Struct. Geol., 19, 369–381.
    [Google Scholar]
  53. Poblet, J., Munoz, J., Trave, A. & Serra‐Kiel, J. (1998) Quantifying the kinematics of detachment faults using three‐dimensional geometry: Application to the Mediano Anticline (Pyrenees, Spain). Geol. Soc. Am. Bull., 110, 111–125.
    [Google Scholar]
  54. Puigdefabegras, C., Munoz, J.A. & Verges, J. (1992) Thrusting and Foreland Basin Evolution in the Southern Pyrenees. In: Thrust Tectonics (Ed. by KMcClay ), pp. 247–254. Chapman & Hall, London.
    [Google Scholar]
  55. Ramsay, J.G. (1974) Development of Chevron Folds. Geol. Soc. Am. Bull., 85, 1741–1754.
    [Google Scholar]
  56. Riba, O. (1976) Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: A genetic interpretation. Sed. Geol., 15, 213–233.
    [Google Scholar]
  57. Sanders, D. & Höfling, R. (2000) Carbonate depostion in mixed siliciclastic‐carbonate environments on top of an orogenic wedge (Late Cretaceous, Northern Calcareous Alps, Austria). Sed. Geol., 137, 127–146.
    [Google Scholar]
  58. Schlische, R.W. (1991) Half‐Graben basin filling models: New constraints on continental extensional basin development. Basin Res., 3, 123–141.
    [Google Scholar]
  59. Schmid, S.M., Fügenschuh, B., Kissling, E. & Schuster, R. (2004) Tectonic map and overall architecture of the Alpine Orogen. Eclogae Geol. Helv., 97, 93–117.
    [Google Scholar]
  60. Sharp, I.R., Gawthorpe, R.L., Armstrong, B. & Underhill, J.R. (2000) Propagation history and passive rotation of Mesoscale normal faults: Implications for synrift stratigraphic development. Basin Res., 12, 285–305.
    [Google Scholar]
  61. Storti, F. & Poblet, J. (1997) Growth stratal architectures associated to Decollement folds and fault‐propagation folds. Inferences on Fold Kinematics. Tectonophysics, 282, 353–373.
    [Google Scholar]
  62. Sullivan, M.D., Medwedeff, D.A., Borer, J., Ortner, H., Clark, J., Paton, D., Trudgill, B. & Amerman, R. (2006) Effect of active structural growth on deep‐water reservoir architecture: An example from the cretaceous upper Gosau subgroup, Northern Calcareous Alps, Austria. AAPG 2006 Ann. Convent. Houston, Abstracts, 102546.
    [Google Scholar]
  63. Suppe, J., Chou, G.T. & Hook, S.C. (1992) Rates of Folding and Faulting Determined from Growth Strata. In: Thrust Tectonics (Ed. by KRMcClay ), pp. 105–121. Chapman & Hall, London.
    [Google Scholar]
  64. Suppe, J., Munoz, J.A., Poblet, J., Roca, E. & Verges, J. (1997) Bed‐by‐bed fold growth by Kink‐Band migration: Sant Llorens De Morunys, Eastern Pyrenees. J. Struct. Geol., 19, 443–461.
    [Google Scholar]
  65. Tikoff, B. & Teyssier, C. (1994) Strain modeling of displacement‐field partitioning in transpressional Orogens. J. Struct. Geol., 16, 1575–1588.
    [Google Scholar]
  66. Tollmann, A. (1976) Der Bau der Nördlichen Kalkalpen, Monographie der Nördlichen Kalkalpen, Teil II. Deuticke, Wien.
    [Google Scholar]
  67. Vernant, P. & Chéry, J. (2006) Mechanical modelling of oblique convergence in the Zagros, Iran. Geophys. J. Int., 165, 991–1002.
    [Google Scholar]
  68. Wagreich, M. (1993) Subcrustal tectonic erosion in orogenic belts – a model for the Late Cretaceous subsidence of the Northern Calcareous Alps (Austria). Geology, 21, 941–944.
    [Google Scholar]
  69. Wagreich, M. (1995) Subduction tectonic erosion and Late Cretaceous subsidence along the Northern Austroalpine Margin (Eastern Alps, Austria). Tectonophysics, 242, 63–78.
    [Google Scholar]
  70. Wagreich, M. (2001) A 400‐km‐long Piggyback Basin (Upper Aptian‐Lower Cenomanian) in the Eastern Alps. Terra Nova, 13, 401–406.
    [Google Scholar]
  71. Wagreich, M. & Faupl, P. (1994) Paleogeography and geodynamic evolution of the Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps, Austria). Paleogeo. Paleoclim. Paleoecol., 110, 235–254.
    [Google Scholar]
  72. Wopfner, H. (1954) Neue Beiträge Zur Geologie der Gosau‐schichten des Muttekopfgebietes. Neues Jb. Geol. Paläontol. Abh., 100, 11–82.
    [Google Scholar]
  73. Zapata, T. & Allmendinger, R.W. (1996) Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo Basin, Argentina. Tectonics, 15, 1065–1083.
    [Google Scholar]
  74. Zerlauth, M., Ortner, H., Pomella, H., Pfiffner, A.O. & Fügenschuh, B. (2014) Inherited tectonic structures controlling the deformation style – an example from the Helvetic Nappes of the Eastern Alps. Swiss J. Geosci., 107, 157–175.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12129
Loading
/content/journals/10.1111/bre.12129
Loading

Data & Media loading...

Supplements

ReadMe file related to Appendix S2.

TEXT

3D‐model of the sliced experiment 2 described in this paper.

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error