1887
Volume 28, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The central and southern Perth Basin in southwestern Australia has a geological history involving multiple regional unconformity‐forming events from the Permian to Recent. This study uses sonic transit time analysis to quantify the magnitudes of net and gross exhumation for four stratigraphic periods from 43 wells. Most importantly, we quantify gross exhumation of the Permian–Triassic, Triassic–Jurassic, Valanginian break‐up and post‐Early Cretaceous events. Post‐Early Cretaceous gross exhumation averages 900‐m offshore and 600‐m onshore. Up to 200 m of this exhumation may be attributed to localized fault block rotation during extension in the Late Cretaceous and/or reverse fault re‐activation due to the compressive stresses in Australia in the last 50 Ma. The remainder is attributed to regional exhumation caused by epeirogenic processes either during the Cenozoic or at the Aptian–Albian boundary. Maximum burial depths prior to the Valanginian unconformity‐forming event were less than those reached subsequently, so that the magnitude of Valanginian break‐up exhumation cannot be accurately quantified. Gross exhumation prior to the break‐up of Gondwana was defined by large magnitude differences (up to 2500 m) between adjoining sub‐basins. At the end of Triassic, exhumation is primarily attributed to reverse re‐activation of faults that were driven by short‐wavelength inversion and exhumation at the end Permian is likely caused by uplift of rotated fault blocks during extension. The evidence from quantitative exhumation analysis indicates a switch in regime, from locally heterogeneous before break‐up to more regionally homogeneous after break‐up.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12133
2015-05-18
2024-04-24
Loading full text...

Full text loading...

References

  1. Backhouse, J. (1988) Late Jurassic and Early Cretaceous palynology of the Perth Basin, Western Australia, Western Australia Geological Survey. Perth Bull., 135, 1–233. retrieved from http://geodocs.dmp.wa.gov.au/
    [Google Scholar]
  2. Backhouse, J. (1993) Palynology and correlation of Permian sediments in the Perth, Collie, and Officer Basins, Western Australia, Western Australia Geological Survey, Report 34, Professional Papers, 111–128.
  3. Barnett‐Moore, N., Flament, N., Heine, C., Butterworth, N. & Müller, R.D. (2014) Cenozoic uplift of south Western Australia as constrained by river profiles. Tectonophysics, 622, 186–197.
    [Google Scholar]
  4. Baron, M. & Parnell, J. (2007) Relationships between stylolites and cementation in sandstone reservoirs: examples from the North Sea, UK and East Greenland. Sediment. Geol., 194, 17–35.
    [Google Scholar]
  5. Braun, J. & Beaumont, C. (1989) A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology, 17, 760–764.
    [Google Scholar]
  6. Braun, J., Burbidge, D.R., Gesto, F.N., Sandiford, M., Gleadow, A.J.W., Kohn, B.P. & Cummins, P.R. (2009) Constraints on the current rate of deformation and surface uplift of the Australian continent from a new seismic database and low‐T thermochronological data. Aust. J. Earth Sci., 56, 99–110.
    [Google Scholar]
  7. Bray, R.J., Green, P.F. & Duddy, I.R. (1992) Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: a case study from the UK East Midlands and Southern North Sea. Geol. Soc. Lond. Spec. Publ., 67, 3–25.
    [Google Scholar]
  8. Bulat, J. & Stoker, S.J. (1987) Uplift determination from interval velocity studies, UK, Southern North Sea. In: Petroleum Geology of North West Europe (Ed. by J.Brooks & K.Glennie ), pp. 293–305. Proceedings of the 3rd Conference on Petroleum Geology of North West Europe held at the Barbican Centre, London, 26–29 October 1986, Volume 1.
    [Google Scholar]
  9. Butland, C. & George, A.D. (2012) Chapter 3: Sedimentology and diagenesis of Whicher Range tight‐gas reservoir sandstones, Southern Perth Basin, Western Australia. Whicher Range tight gas sands study. Western Australian Energy Research Alliance (wa:era), Geol. Surv. West. Aust. Rep., 112, 119–177.
    [Google Scholar]
  10. Causebrook, R., Dance, T. & Bale, K. (2006) Southern Perth basin site investigation and geological model for storage of carbon dioxide. CO2CRC Report Number: RPT06‐0162.
  11. Champ, P. (2010). Building a Robust Groundwater Model for the Southern Perth Basin, WA: 3D Visualization and Modelling of Geology Using Petrel™ . Groundwater, Canberra. retrieved from http://www.groundwater2010.com/documents/4DPaulChamp.pdf
    [Google Scholar]
  12. Coffin, M.F. & Eldholm, O. (1992) Volcanism and continental break‐up: a global compilation of large igneous provinces. Geol. Soc. Lond. Spec. Publ., 68, 17–30.
    [Google Scholar]
  13. Coffin, M.F., Pringle, M.S., Duncan, R.A., Gladczenko, T.P., Storey, M., Müller, R.D. & Gahagan, L.A. (2002) Kerguelen hotspot magma output since 130 Ma. J. Petrol., 43, 1121–1139.
    [Google Scholar]
  14. Conrad, C.P. & Gurnis, M. (2003) Seismic tomography, surface uplift, and the breakup of Gondwanaland: integrating mantle convection backwards in time. Geochem. Geophys. Geosyst., 4, 1031.
    [Google Scholar]
  15. Corcoran, D.V. & Doré, A.G. (2005) A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins. Earth‐Sci. Rev., 72, 129–168.
    [Google Scholar]
  16. Crostella, A. & Backhouse, J. (2000) Geology and petroleum exploration of the central and southern Perth Basin, Western Australia. Report 57, Geological Survey of Western Australia.
  17. Czarnota, K., Hoggard, M.J., White, N. & Winterbourne, J. (2013) Spatial and temporal patterns of Cenozoic dynamic topography around Australia. Geochem. Geophys. Geosyst., 14, 634–658.
    [Google Scholar]
  18. Czarnota, K., Roberts, G.G., White, N.J. & Fishwick, S. (2014) Spatial and temporal patterns of Australian dynamic topography from river profile modeling. J. Geophys. Res., 119, 1384–1424.
    [Google Scholar]
  19. Daniel, R. (2005) Carbon dioxide seal capacity study, Vlaming Sub‐basin, Perth Basin, Western Australia, CO2CRC. Adelaide. Appendix 3 of RPT06‐0162, 1–3. retrieved from http://www.co2crc.com.au/dls/pubs/regional/perth/Appendix33_RPT05-0044.pdf
  20. Delle Piane, C., Olierook, H.K.H., Timms, N.E., Saeedi, A., Esteban, L., Razaee, R., Mikhaltsevitch, V. & Lebedev, M. (2013) Facies‐based rock properties distribution along the Harvey 1 stratigraphic well. CSIRO Report Number EP133710.
  21. Densley, M.R., Hillis, R.R. & Redfearn, J.E.P. (2000) Quantification of uplift in the Carnarvon Basin based on interval velocities. Aust. J. Earth Sci., 47, 111–122.
    [Google Scholar]
  22. Descourvieres, C., Douglas, G., Leyland, L., Hartog, N. & Prommer, H. (2011) Geochemical reconstruction of the provenance, weathering and deposition of detrital‐dominated sediments in the Perth Basin: the Cretaceous Leederville Formation, South‐West Australia. Sed. Geol., 236, 62–76.
    [Google Scholar]
  23. Descourvières, C., Hartog, N., Patterson, B.M., Oldham, C. & Prommer, H. (2010) Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Appl. Geochem., 25, 261–275.
    [Google Scholar]
  24. Direen, N.G. (2011) Comment on ‘Antarctica — before and after Gondwana’ by S.D. Boger Gondwana Res., 19 (2), 335–371. Gondwana Research, 21, 302–304.
    [Google Scholar]
  25. Doré, A.G., Corcoran, D.V. & Scotchman, I.C. (2002) Prediction of the hydrocarbon system in exhumed basins and application to the NW European margin. In: Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration (Ed. by DoréA.G. , CartwrightJ.A. , StokerM.S. , TurnerJ.P. & WhiteN. ) Geol. Soc. Spec. Publ., 196, 401–429.
    [Google Scholar]
  26. England, P. & Molnar, P. (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18, 1173–1177.
    [Google Scholar]
  27. Gaina, C., Müller, R.D., Brown, B., Ishihara, T. & Ivanov, S. (2007) Breakup and early seafloor spreading between India and Antarctica. Geophys. J. Int., 170, 151–169.
    [Google Scholar]
  28. Gibbons, A.D., Whittaker, J.M. & Müller, R.D. (2013) The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best‐fit tectonic model. J. Geophys. Res., 118, 808–822.
    [Google Scholar]
  29. Giles, M.R., Indrelid, S.L. & James, D.M.D. (1998) Compaction: the great unknown in basin modeling. In: Basin Modeling: Practice and Progress (Ed. by DuppenbeckerS.J. & IliffeJ.E. ) Geol. Soc. Spec. Publ., 141, 15–43.
    [Google Scholar]
  30. Gradstein, F.M., Ogg, J.G., Schmitz, M.D. & Ogg, G.M., (Ed. by) (2012) The Geologic Time Scale 2012 2‐Volume Set (Vol. 2). Elsevier, Oxford, UK.
    [Google Scholar]
  31. Green, P.F. & Duddy, I.R. (2013a). The influence of exhumation on petroleum prospectivity in the sedimentary basins of WA. Western Australian Basins Symposium 2013, Perth, WA, 18‐21 August 2013.
  32. Green, P.F. & Duddy, I.R. (2013b) Thermal history reconstruction in sedimentary basins using apatite fission‐track analysis and related techniques. In: Analyzing the Thermal History of Sedimentary Basins: Methods and Case Studies (Ed. by HarrisN.B. & PetersK.E. ), Soc. Sediment. Geol. (SEPM) Spec. Publ. No. 103., 65–104.
    [Google Scholar]
  33. Hillis, R.R., Thomson, K. & Underhill, J.R. (1994) Quantification of Tertiary erosion in the Inner Moray Firth using sonic velocity data from the Chalk and Kimmeridge Clay. Mar. Pet. Geol., 11, 283–293.
    [Google Scholar]
  34. Hillis, R.R. (1995a) Regional tertiary exhumation in and around the United Kingdom. Geol. Soc. Lond. Spec. Publ., 88, 167–190.
    [Google Scholar]
  35. Hillis, R.R. (1995b) Quantification of Tertiary exhumation in the United Kingdom Southern North Sea using sonic velocity data. AAPG Bull., 79, 130–152.
    [Google Scholar]
  36. Iasky, R.P., Young, R.A. & Middleton, M.F. (1991) Structural study of the Southern Perth Basin by geophysical methods. Explor. Geophys., 22, 199–206.
    [Google Scholar]
  37. Iasky, R.P. (1993) A structural study of the southern Perth Basin, Western Australia, Geological Survey of Western Australia. Perth, 1–56. retrieved from http://geodocs.dmp.wa.gov.au/
  38. Ingram, B.S. & Cockbain, A.E. (1978) The stratigraphy of Ginginup No. 1, Central Perth Basin, Geological Survey of Western Australia, 49–50. retrieved from http://geodocs.dmp.wa.gov.au/
  39. Japsen, P. (1999) Overpressured Cenozoic shale mapped from velocity anomalies relative to a baseline for marine shale, North Sea. Petrol. Geosci., 5, 321–336.
    [Google Scholar]
  40. Japsen, P. (2000) Investigation of multi‐phase erosion using reconstructed shale trends based on sonic data. Sole Pit axis, North Sea. Glob. Planet. Change, 24, 189–210.
    [Google Scholar]
  41. Japsen, P., Bidstrup, T. & Lidmar‐Bergstrem, K. (2002) Neogene uplift and erosion of Southern Scandinavia induced by the rise of the South Swedish dome. In: Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration (Ed. by DoréA.G. , CartwrightJ.A. , StokerM.S. , TurnerJ.P. & WhiteN. ) Geol. Soc. Spec. Publ., 196, 183–287.
    [Google Scholar]
  42. Japsen, P., Muckerji, T. & Mavko, G. (2007) Constraints on velocity‐depth trends from physics models. Geophys. Prospect., 55, 135–154.
    [Google Scholar]
  43. Jones, S.M., White, N. & Lovell, B. (2001) Cenozoic and Cretaceous transient uplift in the Porcupine Basin and its relationship to a mantle plume. Geol. Soc. Lond. Spec. Publ., 188, 345–360.
    [Google Scholar]
  44. Kantsler, A.J. & Cook, A.C. (1979) Maturation patterns in the Perth Basin. Aust. Petrol. Explor. Assoc. J., 19, 94–107.
    [Google Scholar]
  45. Kusznir, N.J. & Karner, G.D. (2007) Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins. Geol. Soc. Lond. Spec. Publ., 282, 389–419.
    [Google Scholar]
  46. Lubanzadio, M., Goulty, N.R. & Swarbrick, R.E. (2006) Dependence of sonic velocity on effective stress in North Sea Mesozoic mudstones. Mar. Pet. Geol., 23, 647–653.
    [Google Scholar]
  47. Marcussen, Ø., Thyberg, B.I., Peltonen, C., Jahren, J., Bjørlykke, K. & Faleide, J.I. (2009) Physical properties of Cenozoic mudstones from the Northern North Sea: impact of clay mineralogy on compaction trends. AAPG Bull., 93, 127–150.
    [Google Scholar]
  48. Markl, R.G. (1974) Evidence for the breakup of eastern Gondwanaland by the Early Cretaceous. Nature, 251, 196–200.
    [Google Scholar]
  49. Markl, R.G. (1978) Further evidence for the Early Cretaceous breakup of Gondwanaland off southwestern Australia. Mar. Geol., 26, 41–48.
    [Google Scholar]
  50. Marshal, J.F., Ramsay, D.C., Moore, A.M.G., Shafik, S., Graham, T.G. & Needham, J. (1993) The Vlaming Sub‐basin, offshore south Perth basin continental margins program Folio 7, Geoscience Australia, Canberra.
  51. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  52. Miall, A.D. (1996) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, New York.
    [Google Scholar]
  53. Middleton, M.F. & Hunt, J.W. (1989) Influence of tectonics on Permian coal‐rank patterns in Australia. Int. J. Coal Geol., 13, 391–411.
    [Google Scholar]
  54. Mondol, N.H., Bjørlykke, K., Jahren, J. & Høeg, K. (2007) Experimental mechanical compaction of clay mineral aggregates—changes in physical properties of mudstones during burial. Mar. Pet. Geol., 24, 289–311.
    [Google Scholar]
  55. Mory, A.J. & Iasky, R.P. (1996) Stratigraphy and structure of the onshore northern Perth Basin, Western Australia, Western Australia Geological Survey. Perth retrieved from http://geodocs.dmp.wa.gov.au/
  56. Olierook, H.K.H., Delle Piane, C., Timms, N.E., Esteban, L., Razaee, R., Mory, A.J. & Hancock, L. (2014a) Facies‐based rock properties characterization for CO2 Sequestration: GSWA Harvey 1 well, Western Australia. Mar. Pet. Geol., 50, 83–102.
    [Google Scholar]
  57. Olierook, H.K.H., Timms, N.E. & Hamilton, P.J. (2014b) Mechanisms for permeability modification in the damage zone of a normal fault, northern Perth Basin, Western Australia. Mar. Pet. Geol., 50, 130–147.
    [Google Scholar]
  58. Olierook, H.K.H., Timms, N.E., Merle, R.E., Jourdan, F. & Wilkes, P.G. (2015) Paleo‐drainage and fault development in the Southern Perth Basin, Western Australia during and after the breakup of Gondwana from 3D modelling of the Bunbury Basalt. Aust. J. Earth Sci. doi: 10.1080/08120099.2015.1030774
    [Google Scholar]
  59. Peltonen, C., Marcussen, Ø., Bjørlykke, K. & Jahren, J. (2008) Mineralogical control on mudstone compaction: a study of Late Cretaceous to Early Tertiary mudstones of the Vøring and Møre basins, Norwegian Sea. Petrol. Geosci., 14, 127–138.
    [Google Scholar]
  60. Peltonen, C., Marcussen, Ø., Bjørlykke, K. & Jahren, J. (2009) Clay mineral diagenesis and quartz cementation in mudstones: the effects of smectite to illite reaction on rock properties. Mar. Pet. Geol., 26, 887–898.
    [Google Scholar]
  61. Playford, P.E., Cockbain, A.E. & Low, G.H. (1976) Geology of the Perth Basin, Western Australia, geological survey of Western Australia. Perth Bull., 124, 1–323. retrieved from http://geodocs.dmp.wa.gov.au/
    [Google Scholar]
  62. Pryer, L., Loutit, T., Gardner, P., Petrovich, S., Teasdale, J., Stuart‐Smith, P., Romine, K., Shi, Z., deVries, S., Cathro, D., Etheridge, M., Foss, C., Munroe, M., Hamm, A., Ebrahim, M., Vizy, J., Henley, P., Mills, A. & Guy‐Villon, M. (2005) OZ SEEBASE™ Structural GIS, FrOGTech Pty Ltd. Canberra, 184.
  63. Rider, M.H. & Kennedy, M. (2011) The Geological Interpretation of Well Logs. 3rd revised edn, Rider‐French Consulting Limited, Caithness, UK.
    [Google Scholar]
  64. Saunders, A.D., Jones, S.M., Morgan, L.A., Pierce, K.L., Widdowson, M. & Xu, Y.G. (2007) Regional uplift associated with continental large igneous provinces: the roles of mantle plumes and the lithosphere. Chem. Geol., 241, 282–318.
    [Google Scholar]
  65. Seggie, R. (1990) Geological Cross‐Section of the Vlaming Sub‐Basin, South Perth Basin, Australia Bureau of Mineral Resources, Record 1990/64.
  66. Song, T. & Cawood, P.A. (2000) Structural styles in the Perth Basin associated with the Mesozoic break‐up of Greater India and Australia. Tectonophysics, 317, 55–72.
    [Google Scholar]
  67. Tassone, D.R., Holford, S.P., Duddy, I.R., Green, P.F. & Hillis, R.R. (2014a) Quantifying Cretaceous–Cenozoic exhumation in the Otway basin, southeastern Australia, using sonic transit time data: implications for conventional and unconventional hydrocarbon prospectivity. AAPG Bull., 98, 67–117.
    [Google Scholar]
  68. Tassone, D.R., Holford, S.P., Stoker, M.S., Green, P., Johnson, H., Underhill, J.R. & Hillis, R.R. (2014b) Constraining Cenozoic exhumation in the Faroe‐Shetland region using sonic transit time data. Basin Res., 26, 38–72.
    [Google Scholar]
  69. Timms, N.E., Corbel, S., Olierook, H., Wilkes, P., Delle Piane, C., Sheldon, H., Alix, R., Horowitz, F., Wilson, M., Evans, K.A., Grifiths, C., Stütenbecker, L., Israni, S., Hamilton, P.J., Esteban, L., Cope, P., Evans, C., Pimienta, C., Dyt, C., Huang, X., Hopkins, J. & Champion, D. (2012) Project 2: Geomodel, WA Geothermal Centre of Excellence/CSIRO. Perth, 1–188. retrieved from http://www.geothermal.org.au/final_reports/Project2%20Geomodel%20WEB.pdf
  70. Timms, N.E., Olierook, H.K.H., Wilson, M.E.J., Delle Piane, C., Hamilton, P.J., Cope, P. & Stütenbecker, L. (2015) Sedimentary facies analysis, mineralogy and diagenesis of the Mesozoic aquifers of the central Perth Basin. Mar. Pet. Geol., 60, 54–78.
    [Google Scholar]
  71. Walford, H.L. & White, N.J. (2005) Constraining uplift and denudation of West African continental margin by inversion of stacking velocity data. J. Geophys. Res., 110, B04403.
    [Google Scholar]
  72. Watson, M.N. (2006) Petrological characterisation of the Vlaming Sub‐basin, Perth basin for the purpose of CO2 storage, CO2CRC report no. RPT06‐0098.
  73. Western Australian Energy Research Alliance (WAERA)
    Western Australian Energy Research Alliance (WAERA) (2012) Whicher range tight gas sands study, Geological Survey of Western Australia. Perth Rep., 112, 405.
    [Google Scholar]
  74. Yielding, G. (1990) Footwall uplift associated with Late Jurassic normal faulting in the Northern North Sea. J. Geol. Soc., 147, 219–222.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12133
Loading
/content/journals/10.1111/bre.12133
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error