1887
Volume 15 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Although DC electrical resistivity imaging is widely applied to dike investigation, either rapid 2D or high‐resolution 3D approaches fail to address actual needs. An intermediate electrical resistivity imaging approach referred to as “3D“ is introduced in this paper. The methodology is based on existing tools, and it offers useful and sufficiently reliable 3D images of the investigated structure within a cost‐effective and flexible procedure. The survey design, the model discretisation, and the thorough integration of information are the main phases of this procedure. To demonstrate the benefits and limitations of this approach, it is applied to an existing stretch of embankment levee along the Loire River. A numerical study was carried out both on synthetic and real data to assess the 3D imaging capability of the approach and the influence of prior information on the inversion outputs. The important role of information is shown to be even more essential here. The results demonstrate the efficiency and versatility of the 3D approach for reliable and cost‐effective investigations of long dikes.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016036
2016-08-01
2024-03-28
Loading full text...

Full text loading...

References

  1. AntoineR., FauchardC., FargierY. and DurandE.2015. Detection of leakage areas in an earth embankment from GPR measurements and permeability logging. International Journal of Geophysics2015, 9p.
    [Google Scholar]
  2. BlomeM., MaurerH.R. and SchmidtK.2009. Advances in three‐dimensional geoelectric forward solver techniques. Geophysical Journal International176(3), 740–752.
    [Google Scholar]
  3. CardarelliE. and FischangerF.2006. 2D data modelling by electrical resistivity tomography for complex subsurface geology. Geophyical Prospecting54(2), 121–33.
    [Google Scholar]
  4. CardarelliE., CercatoM. and Di FilippoG.2010. Geophysical investigation for the rehabilitation of a flood control embankment. Near Surface Geophysics8(4), 287–296.
    [Google Scholar]
  5. CardarelliE., CercatoM. and De DonnoG.2014. Characterization of an earth‐filled dam through the combined use of electrical resistivity tomography, P‐ and SH‐wave seismic tomography and surface wave data. Journal of Applied Geophysics106, 87–95.
    [Google Scholar]
  6. CarlstenS., JohanssonS. and WörmanA.1995. Radar techniques for indicating internal erosion in embankment dams. Journal of Applied Geophysics33(1–3), 143–156.
    [Google Scholar]
  7. CaterinaD., HermansT. and NguyenF.2014. Case studies of incorporation of prior information in electrical resistivity tomography: comparison of different approaches. Near Surface Geophysics12, 451–465.
    [Google Scholar]
  8. CattL.M.L., WestL.J. and ClarkR.A.2009. The use of reference models from a priori data to guide 2D inversion of electrical resistivity tomography data. Geophysical Prospecting57(6), 1035–1048.
    [Google Scholar]
  9. ChambersJ.E., GunnD.A., WilkinsonP.B., MeldrumP.I., HaslamE., HolyoakeS. et al. 2014. 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surface Geophysics12(1), 61–72.
    [Google Scholar]
  10. ChoI.K., HaI.S., KimK.S., AhnH.Y., LeeS. and KangH.J.2014. 3D effects on 2D resistivity monitoring in earth‐fill dams. Near Surface Geophysics12(1), 73–81.
    [Google Scholar]
  11. ChoI.‐K. and YeomJ.‐Y.2007. Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam. Geophysics72(2), G31–G38.
    [Google Scholar]
  12. CIRIA, MEDDE (Ministère de l'Ecologie du Développement durable et de l'Energie) and USACE (US Army Corps of Engineers)
    CIRIA, MEDDE (Ministère de l'Ecologie du Développement durable et de l'Energie) and USACE (US Army Corps of Engineers) . 2013. The International Levee Handbook. London, UK:CIRIA, 1349p.
    [Google Scholar]
  13. ConstableS.C., ParkerR.L. and ConstableC.G.1987. Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics52(3), 289–300.
    [Google Scholar]
  14. CosciaI., GreenhalghS.A., LindeN., DoetschJ., MarescotL., GüntherT. et al. 2011. 3D crosshole ERT for aquifer characterization and monitoring of infiltrating river water. Geophysics76(2), G49–G59.
    [Google Scholar]
  15. deGroot‐HedlinC. and ConstableS.1990. Occam's inversion to generate smooth, two‐dimensional models from magnetotelluric data. Geophysics55(12), 1613–1624.
    [Google Scholar]
  16. DonohueS., GavinK. and TolooiyanA.2011. Geophysical and geotech‐nical assessment of a railway embankment failure. Near Surface Geophysics9(1), 33–44.
    [Google Scholar]
  17. Du PlooyR., Palma LopesS., VillainG. and DérobertX.2013. Development of a multi‐ring resistivity cell and multi‐electrode resistivity probe for investigation of cover concrete condition. NDT & E International54, 27–36.
    [Google Scholar]
  18. EllisR.G. and OldenburgD.W.1994. Applied geophysical inversion. Geophysical Journal International116, 5–11.
    [Google Scholar]
  19. FargierY.2011. Développement de l'imagerie de résistivité electrique pour la reconnaissance et la surveillance des ouvrages hydrauliques en terre. PhD thesis, École Centrale de Nantes, France, 244p.
    [Google Scholar]
  20. FargierY., Palma LopesS., FauchardC., FrançoisD. and CôteP.2014. DC‐electrical resistivity imaging for embankment dike investigation: a 3D extended normalisation approach. Journal of Applied Geophysics103, 245–256.
    [Google Scholar]
  21. FauchardC. and MériauxP.2007. Geophysical and Geotechnical Methods for Diagnosing Flood Protection Dikes: Guide for Implementation and Interpretation, 1st edn. Quae, 124p.
    [Google Scholar]
  22. FosterM., FellR. and SpannagleM.2000. The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal37(5), 1000–1024.
    [Google Scholar]
  23. GüntherT.2004. Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements. PhD thesis, Technischen Universität Bergakademie Freiberg, Germany, 150p.
    [Google Scholar]
  24. GüntherT. and RückerC.2006. A general approach for introducing information into inversion and examples from DC resistivity inversion. 12th European Meeting of Environmental and Engineering Geophysics, Helsinki, Finland, Expanded Abstracts, P039.
    [Google Scholar]
  25. GüntherT., RückerC. and SpitzerK.2006. Three‐dimensional modelling and inversion of DC resistivity data incorporating topography— II. Inversion. Geophysical Journal International166(2), 506–517.
    [Google Scholar]
  26. GuptaP.K., NiwasS. and GaurV.K.1997. Straightforward inversion of vertical electrical sounding data. Geophysics62(3), 775–785.
    [Google Scholar]
  27. HennigT., WellerA. and CanhT.2005. The effect of dike geometry on different resistivity configurations. Journal of Applied Geophysics57(4), 278–292.
    [Google Scholar]
  28. HennigT., WellerA. and MöllerM.2008. Object orientated focussing of geoelectrical multielectrode measurements. Journal of Applied Geophysics65, 57–64.
    [Google Scholar]
  29. InazakiT. and SakamotoT.2005. Geotechnical characterization of levee by integrated geophysical surveying. In: Proceedings of the International Symposium on Dam Safety and Detection of Hidden Troubles of Dams and Dikes.
    [Google Scholar]
  30. JodryC., FargierY., Palma LopesS., CôteP. and SanchezM.2014. A cost‐effective 3D electrical resistivity imaging approach for embankment dike assessment. 20th European Meeting of Environmental and Engineering Geophysics, Athens, Greece, Extended Abstracts, We PA1 10.
    [Google Scholar]
  31. JohanssonS. and DahlinT.1996. Seepage monitoring in an earth embankment dam by repeated resistivity measurements. European Journal of Environmental and Engineering Geophysics1, 229–247.
    [Google Scholar]
  32. KaipioJ.P., KolehmainenV., VauhkonenM. and SomersaloE.1999. Inverse problems with structural prior information. Inverse Problems15, 713–729.
    [Google Scholar]
  33. KimH.J., SongY. and LeeK.H.1999. Inequality constraint in least squares inversion of geophysical data. Earth Planets Space51, 255–259.
    [Google Scholar]
  34. KimJ.H., TsourlosP., YiM.J. and KarmisP.2014. Inversion of ERT data with a priori information using variable weighting factors. Journal of Applied Geophysics105, 1–9.
    [Google Scholar]
  35. LokeM.H. and BarkerR.1996. Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method. Geophysical Prospecting44(1), 131–152.
    [Google Scholar]
  36. LokeM.H.2012. RES2DINVx32 version 3.59 for Rapid 2‐D resistivity and IP inversion using the least‐squares method, 157p. Available online at http://www.geotomosoft.com.
    [Google Scholar]
  37. MarescotL., RigobertS., Palma LopesS., LagabrielleR. and ChapellierD.2006. A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures. Journal of Applied Geophysics60(1), 55–67.
    [Google Scholar]
  38. MenkeW.1984. Geophysical Data Analysis: Discrete Inverse Theory. London, UK:Academic Press, 260p.
    [Google Scholar]
  39. NiederleithingerE., WellerA., LewisR., StotznerU., FechnerT., LorenzB. et al. 2012. Evaluation of geophysical techniques for dike inspection. Journal of Environmental and Engineering Geophysics17(4), 185–195.
    [Google Scholar]
  40. OhS.2012. Electrical resistivity response due to variation in embankment shape and reservoir levels. Environmental Earth Sciences65(3), 571–579.
    [Google Scholar]
  41. OldenburgD.W. and LiY.1994. Inversion of induced polarization data. Geophysics59(9), 1327–1341.
    [Google Scholar]
  42. ParkS.K. and VanG.P.1991. Inversion of pole‐pole data for 3‐D resistivity structure beneath arrays of electrodes. Geophysics56(7), 951–960.
    [Google Scholar]
  43. PidliseckyA., HaberE. and KnightR.2007. RESINVM3D: a 3D resistivity inversion package. Geophysics72(2), H1–H10.
    [Google Scholar]
  44. RoyetP., Palma LopesS., FauchardC., MériauxP. and AuriauL.2013. Rapid and cost‐effective dike condition assessment methods: geophysics and remote sensing. Technical Report. FloodProBE EU‐funded project (FP7 ENV.2009.3.1.5.1), 117p.
    [Google Scholar]
  45. RückerC., GüntherT. and SpitzerK.2006. Three‐dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophysical Journal International166(2), 495–505.
    [Google Scholar]
  46. SasakiY.1994. 3‐D resistivity inversion using the finite‐element method. Geophysics59(12), 1839–1848.
    [Google Scholar]
  47. SjödahlP., DahlinT., JohanssonS. and LokeM.H.2008. Resistivity monitoring for leakage and internal erosion detection at Hällby embankment dam. Journal of Applied Geophysics65(3–4), 155–164.
    [Google Scholar]
  48. SjödahlP., DahlinT. and ZhouB.2006. 2.5D resistivity modeling of embankment dams to assess influence from geometry and material properties. Geophysics71(3), G107.
    [Google Scholar]
  49. TikhonovA. and ArsénineV.1976. Méthodes de Résolution de Problèmes Mal Posés. Moscow, Russia:MIR, 202p.
    [Google Scholar]
  50. WellerA., LewisR., CanhT., MöllerM. and ScholzB.2014. Geotechnical and geophysical long‐term monitoring at a levee of Red River in Vietnam. Journal of Environmental and Engineering Geophysics19, 183–192.
    [Google Scholar]
  51. YiM.J., KimJ.H., SongY., ChoS.J., ChungS.H. and SuhJ.H.2001. Three‐dimensional imaging of subsurface structures using resistivity data. Geophysical Prospecting49(4), 483–497.
    [Google Scholar]
  52. ZienkiewiczO.C. and TaylorR.L.2000. The Finite Element Method, Volume 1: The Basis, 5th edn. Oxford, UK:Butterworth and Heinemann, 708p.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016036
Loading
/content/journals/10.3997/1873-0604.2016036
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error