1887
Volume 15 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Tomography using muons is a method to investigate the subsurface density. Muons are particles produced in the atmosphere, and their absorption depends on the quantity of matter they pass through, hence on the rock density and thickness. The Temporal Tomography of rock mass Density using Muons flux Measurement (T2DM2) project aims to characterise the spatial and temporal density variations of the first hundreds of metres of the subsurface. These variations can be induced by water transfer within the critical zone or other thermo‐hydro‐mechanical processes like fracturing. The imaging potential of muography and its application to hydrogeological processes are introduced. Numerical simulations are performed to estimate the significance of the muon flux fluctuations associated to rock density and composition variations for depths ranging from 60 to 1000 m. Particular attention is paid to muon scattering in rocks, which should be taken into account in order to achieve a good spatial and angular resolution.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016053
2016-02-01
2024-04-24
Loading full text...

Full text loading...

References

  1. AlvarezL.W., AndersonJ.A., ElbedweF., BurkhardJ., FakhryA., GirgisA.et al.1970. Search for hidden chambers in the pyramids. Science167(3919), 832–839.
    [Google Scholar]
  2. AmbrosiG., AmbrosinoF., BattistonR., BrossA., CallierS., CasseseF.et al.2011. The MU‐RAY project: volcano radiography with cosmicray muons. Nuclear Instruments and Methods in Physics Research A628, 120–123.
    [Google Scholar]
  3. AvanL. and AvanM.1955. Intensité et distribution angulaire de la composante pénétrante du rayonnement cosmique sous le sol. Comptes Rendus de l’Académie des Sciences241, 1122–1124.
    [Google Scholar]
  4. BergamascoL., PiazzoliB.D. and PicchiP.1971. Muon intensities underground ((50/4300) m we) and the SL energy spectrum. Il Nuovo Cimento B4, 59–67.
    [Google Scholar]
  5. BetheH.A.1953. Molière’s theory of multiple scattering. Physical Review89, 1256–1266.
    [Google Scholar]
  6. BhattacharyyaD.1978. Effect of solar modulation on the low energy sea level muon spectrum near the geomagnetic equator. Australian Journal of Physics31, 451–453.
    [Google Scholar]
  7. BorozdinK., HoganG., MorrisC., PriedhorskyW., SaundersA., SchultzL.et al.2003. Surveillance: radiographic imaging with cosmicray muons. Nature422, 277.
    [Google Scholar]
  8. CarloganuC., NiessV., BeneS., BusatoE., DupieuxP., FehrF.et al.2013. Towards a muon radiography of the Puy‐de‐Dôme. Geoscientific Instrumentation Methods and Data Systems2, 55–60.
    [Google Scholar]
  9. CastagnoliC., MarcoA.D., LonghettoA. and PenengoP.1965. Measurements on the cosmic radiation intensity in the Mont Blanc tunnel. Il Nuovo Cimento35(4), 969–976.
    [Google Scholar]
  10. DormanL.I.2004. Cosmic Rays in the Earth’s Atmosphere and Underground.Kluwer Academic Publishers, 330pp.
    [Google Scholar]
  11. EmblanchC., BlavouxB., PuigJ. and CourenM.1998. The use of carbon 13 as a tracer of the karst unsaturated zone. Comptes Rendus de L’académie des Sciences326, 327–332.
    [Google Scholar]
  12. FournierF., LeonideP., BiscarratK., GalloisA., BorgomanoJ. and FoubertA.2011. Elastic properties of microporous cemented grainstones. Geophysics76, E211–E226.
    [Google Scholar]
  13. GaisserT.K.1990. Cosmic Rays and Particle Physics. Cambridge University Press, 279pp.
    [Google Scholar]
  14. GarryB.2007. Etude des processus d’écoulement de la zone non saturée pour la modélisation des aquifères karstiques. Expérimentation hydrodynamique et hydrochimique sur les sites du Laboratoire Souterrain Bas Bruit (LSBB) de Rustrel et de Fontaine de Vaucluse . PhD thesis, University of Avignon, France, 216pp.
    [Google Scholar]
  15. GeorgeE.P.1955. Cosmic rays measure overburden of tunnel. Commonwealth Engineer July 1, 455–457.
    [Google Scholar]
  16. GriederP.K.F.2001. Cosmic rays at Earth: Researcher’s Reference Manual and Data. Amsterdam, The Netherlands: Elsevier Science, 1068pp.
    [Google Scholar]
  17. KedarS., TanakaH.K.M., NaudetC.J., JonesC.E., PlautJ.P. and WebbF.H.2013. Muon radiography for exploration of Mars geology. Geoscientific Instrumentation Methods and Data Systems2, 157–164.
    [Google Scholar]
  18. KudryavtsevV.2009. Muon simulation codes MUSIC and MUSUN for underground physics. Computer Physics Communications180, 339–346.
    [Google Scholar]
  19. KudryavtsevV., SpoonerN., GluyasJ., FungC. and ColemanM.2012. Monitoring subsurface CO2 emplacement and security of storage using muon tomography. International Journal of Greenhouse Gas Control11, 21–24.
    [Google Scholar]
  20. LesparreN., GibertD., MarteauJ., DeclaisY., CarboneD. and GalichetE.2010. Geophysical muon imaging: feasibility and limits. Geophysical Journal International183, 1348–1361.
    [Google Scholar]
  21. MenonM. and MurthyP.R.1967. Cosmic ray intensities deep underground. Progress in Cosmic Ray and Elementary Particles Physics9, 161–243.
    [Google Scholar]
  22. MolièreG.1947. Theorie Der Streuung Schneller Geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb‐Feld. Zeitschrift für Naturforschung A2, 133–145.
    [Google Scholar]
  23. MolièreG.1948. Theorie Der Streuung Schneller Geladener Teilchen II. Mehrfach‐ und Vielfachstreuung. Zeitschrift für Naturforschung A3, 78–97.
    [Google Scholar]
  24. NagamineK., IwasakiM., ShimomuraK. and IshidaK.1995. Method of probing inner‐structure of geophysical substance with the horizontal cosmic‐ray muons and possible application to volcanic‐eruption prediction. Nuclear Instruments and Methods in Physics Research Section A356, 585–595.
    [Google Scholar]
  25. PesenteS., VaniniS., BenettoniM., BonomiG., CalviniP., ChecchiaP.et al.2009. First results on material identification and imaging with a large‐volume muon tomography prototype. Nuclear Instruments and Methods in Physics Research Section A604, 738–746.
    [Google Scholar]
  26. SrikantanB. and NarananS.1952. Cosmic rays underground. Indian Academy of Sciences36, 97–117.
    [Google Scholar]
  27. StockelC.1969. A study of muons deep underground. Angular distribution and vertical intensity. Journal of Physics A: General Physics2, 639–649.
    [Google Scholar]
  28. TanakaH.K.M., NakanoT., TakahashiS., YoshidaJ., TakeoM., OikawaJ.et al.2007. High resolution imaging in the inhomogeneous crust with cosmicray muon radiography: the density structure below the volcanic crater floor of Mt. Asama, Japan. Earth and Planetary Science Letters263, 104–113.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016053
Loading
/content/journals/10.3997/1873-0604.2016053
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error