1887
Volume 29, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

We present mineralogic, isotopic and thermochronologic analyses on psammopelitic and tuffaceous levels from the Bermejo and Vinchina basins – both foreland depocentres of the Central Andes of Argentina – that define a low‐temperature regime for the crust akin to a slab shallowing and flattening process. The contents of illite in illite/smectite interstratified (I/S) show a progressive illitization into the deeper parts of both basins. The distribution of I/S is compatible with theoretical simulations and predicted heat flow values of . 26 mW m−2 in the 8–3.4 Ma interval for the Vinchina Basin and . 42 mW m−2 since 9 Ma for the Bermejo Basin. The latter shows heat flow values that are comparable to those reported by magnetotelluric analysis (36–40 mW m−2) in agreement with previously published heat flow calculations along the modern Andean foreland. The Rb–Sr isochrones in psammopelites (<2 μm fractions) show ages between 125 and 165 Ma, whereas the K–Ar ages decrease as the grain size is smaller (136–224 Ma for 1–2 μm, 112–159 Ma for 0.2–1 μm, 76–116 Ma for <0.2 μ and 39.3–42 Ma for <0.1 μm). These ages are significantly older than the sedimentation in the basins (. 16 Ma for the Vinchina Basin; U–Pb age), and can be explained by the presence of a significant amount of detrital components, mainly illite, even in the finer fractions. The preservation of detrital ages is consistent with the shallow diagenesis related to a low‐temperature regime, proposed here for the basins. Younger K–Ar ages (21.3–12 Ma) were obtained for a basal tuffaceous level. Clay mineralogy and R0 ordering in the deepest part of the Vinchina Basin, together with the evolution model of I/S with depth, suggest that the burial temperatures would have not exceeded . 100°C in agreement with (U–Th)/He analyses performed on apatite extracted from two tuffaceous units. Thermal indicators from both studied basins confirm the existence of a low‐temperature regime during flat subduction.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12163
2015-11-26
2024-04-16
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Allen, J.R. (2005) Basin Analysis: Principles and Applications. 2nd edn. Blackwell Publishing Ltd., Oxford549 pp.
    [Google Scholar]
  2. Anderson, M., Alvarado, P., Zandt, G. & Beck, S. (2007) Geometry and brittle deformation of the subducting Nazca plate, Central Chile and Argentina. Geophys. J. Int., 171(1), 419–434.
    [Google Scholar]
  3. Arostegui, J., Sangüsa, F.J., Nieto, F. & Uriarte, J.A. (2006) Thermal models and clay diagenesis in the Tertiary‐Cretaceous sediments of the Alava block (Basque‐Cantabrian basin, Spain). Clay Miner., 41, 791–809.
    [Google Scholar]
  4. Astini, R.A., Dávila, F.M., López Gamundí, O., Gomez, F., Collo, G., Ezpeleta, M., Martina, F. & Ortiz, A. (2005) Cuencas de la Región Precordillerana. In: Frontera Exploratoria de la Argentina (Ed. by G.A.Chebli , J.S.Cortiñas , L.A.Spalletti , L.Lagarreta , E.L.Vallejo ), pp. 115–145. Instituto Argentino del Petróleo y del Gas, Buenos Aires.
    [Google Scholar]
  5. Awwiller, D.N. (1993) Illite‐Smectite formation and potassium mass transfer during burial diagenesis of mudrocks: a study from the Texas Gulf‐Coast Paleocene‐Eocene. J. Sediment. Petrol., 63, 501–512.
    [Google Scholar]
  6. Barazangi, M. & Isacks, B.I. (1976) Spatial distribution of earthquakes and subduction of the Nazca Plate beneath South America. Geology, 4, 686–692.
    [Google Scholar]
  7. Bense, F.A., Wemmer, K., Löbens, S. & Siegesmund, S. (2014) Fault gouge analyses: K‐Ar illite dating, clay mineralogy and tectonic significance—a study from the Sierras Pampeanas, Argentina. Int. J. Earth Sci., 103, 189–218. doi:10.1007/s00531‐013‐0956‐7.
    [Google Scholar]
  8. Borzotta, E., Mamaní, M. & Venencia, J. (2009) Preliminary magnetotelluric study of Ambato and Valle Fértil lineaments in Bermejo Basin and Sierra de Valle Fértil, San Juan, Argentina. Acta Geod. Geophys. Hungarica, 44(2), 157–166. doi:10.1556/AGeod.44.2009.2.2.
    [Google Scholar]
  9. Brown, R.W., Summerfield, M.A. & Gleadow, A.J.W. (1994) Apatite fission track analysis: its potential for the estimation of denudation rates and the assessment of models of long term landscape development. In: Process Models and Theoretical Geomorphology (Ed. by M.J.Kirkby ), pp 23–53. Wiley, Chichester.
    [Google Scholar]
  10. Carrapa, B., Hauer, J., Schoenbohm, L., Strecker, M.R., Schmitt, A.K., Villanueva, A. & Sosa Gomez, J. (2008) Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: an integrated study of the Neogene Fiambalá basin, NW Argentina. Geol. Soc. Am. Bull., 120, 1518–1543.
    [Google Scholar]
  11. Ciccioli, P.L., Limarino, C. & Marenssi, S.A. (2005) Nuevas edades radimétricas para la Formación Toro Negro en la sierra de Los Colorados, Sierras Pampeanas Noroccidentales, provincia de La Rioja. Rev. Asoc. Geol. Argentina, 60, 251–254.
    [Google Scholar]
  12. Ciccioli, P.L., Limarino, C.O. & Friedman, R. (2012) La edad de la Formación Vinchina: Su implicancia en la estratigrafía de la cuenca de antepaís del Bermejo. 1st Simposio del Mioceno‐Pleistoceno del Centro y Norte de Argentina. S.M. del Tucumán. Ameghiniana, 49, 4–7.
  13. Ciccioli, P.L., Marenssi, S.A. & Limarino, C.O. (2014a) Petrology and provenance of the Toro Negro Formation (Neogene) of the Vinchina broken‐foreland basin (Central Andes of Argentina). J. S. Am. Earth Sci., 49, 15–38.
    [Google Scholar]
  14. Ciccioli, P., Limarino, C.O., Friedman, R. & Marenssi, S.A. (2014b) New high precision U‐Pb ages for the Vinchina Formation: implications for the stratigraphy of the Bermejo Andean foreland basin (La Rioja province, western Argentina) . J. S. Am. Earth Sci., 56, 200–213.
    [Google Scholar]
  15. Clauer, N. (2007) Isotope dating and tracing of clay minerals from low‐temperature environments. In: Diagenesis and Low‐Temperature Metamorphism. Theory, Methods and Regional Aspects (Ed. by F.Nieto & J.Jiménez‐Millán ) pp. 85–96. Seminarios de la Sociedad Española de Mineralogía 3, Spain.
    [Google Scholar]
  16. Clauer, N.Y. & Chaudhuri, S. (1999) Isotopic dating of very low‐grade metasedimentary and metavolcanic rocks: techniques and methods. In: Low‐grade Metamorphism (Ed. by M.Frey , D.Robinson ), pp. 202–226. Blackwell, Oxford.
    [Google Scholar]
  17. Collo, G., Dávila, F.M., Nieto, F., Nóbile, J.C. & Astini, R.A. (2009) Interstratified illite/smectite in the Miocene Central Andean foreland: evolution of clay minerals under very low‐paleogeothermal gradients. XIV International Clay Conference, Castellaneta Marina, Italy, p. 214.
  18. Collo, G., Dávila, F.M., Nóbile, J.C., Astini, R.A. & Gehrels, G. (2011) Clay mineralogy and thermal history of the Neogene Vinchina Basin, Central Andes of Argentina: analysis of factors controlling the heating conditions. Tectonics, 30, TC4012. doi:10.1029/2010TC002841.
    [Google Scholar]
  19. Collo, G., Dávila, F., Ezpeleta, M. & Teixeira, W. (2014) U‐Pb detrital ages on tuffaceous and sandstone levels from a Neogene thick foreland basin of the Central Andes of Argentina. Comun. Geol., Especial I, 101, 405–407.
    [Google Scholar]
  20. Cordani, U.G., Kawashita, K. & Thomaz Filho, A. (1978) Applicability of the rubidium‐strontium method to shales and related rocks. Contrib. Geol. Time Scale AAPG Studies Geol., 6, 91–117.
    [Google Scholar]
  21. Cordani, U.G., Mizusaki, A.M., Kawashita, K. & Thomaz‐Filho, A. (2004) Rb‐Sr systematics of Holocene pelitic sediments and their bearing on whole‐rock datings. Geol. Mag., 141, 233–244.
    [Google Scholar]
  22. Coughlin, T.J. (2002) Linked origen‐oblique fault zones in the Central Argentine Andes: The basis of a new model for Andean orogenesis and metallogenesis. Unpublished Thesis, University of Queensland.
  23. Dávila, F.M. & Astini, R.A. (2007) Cenozoic provenance history of synorogenic conglomerates in western Argentina (Famatina belt): implications for Central Andean foreland development. Geol. Soc. Am. Bull., 119, 609–622.
    [Google Scholar]
  24. Dávila, F.M. & Carter, A. (2013) Exhumation history of the Andean broken foreland revisited. Geology, 41, 443–446.
    [Google Scholar]
  25. Dávila, F.M., Astini, R.A., Jordan, T.E. & Kay, S.M. (2004) Early Miocene andesite conglomerates in the Sierra de Famatina, broken foreland region of western Argentina, and documentation of magmatic broadening in the south‐central Andes. J. S. Am. Earth Sci., 17, 89–101.
    [Google Scholar]
  26. Dávila, F.M., Collo, G., Astini, R.A. & Gehrels, G. (2008) U‐Pb detrital ages on a tuffaceous sandstone sheet in the Vinchina Formation, La Rioja, Argentina: Deposition and exhumation implications. XVII Congreso Geológico Argentino, 95‐96.
  27. Ehlers, T.A. & Farley, K.A. (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett., 206, 1–14.
    [Google Scholar]
  28. Farley, K.A., Wolf, R.A. & Silver, L.T. (1996) The effects of long alpha‐stopping distances on (U‐Th)/He ages. Geochim. Cosmochim. Acta, 60, 4223–4229.
    [Google Scholar]
  29. Fitzgerald, P.G., Sorkhabi, R.B., Redfield, T.F. & Stump, E. (1995) Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J. Geophys. Res., 100, 175–191.
    [Google Scholar]
  30. Flowers, R.M., Ketcham, R.A., Shuster, D.L. & Farley, K.A. (2009) Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta, 3, 2347–2365.
    [Google Scholar]
  31. Frey, M. & Robinson, D. (1999) Low Grade Metamorphism. Blackwell Science, Cambridge, 313 pp.
    [Google Scholar]
  32. Furlong, K.P. & Chapman, D.S. (2013) Heat Flow, Heat Generation, and the Thermal State of the Lithoshpere. Annu. Rev. Earth Planet. Sci., 05/2012. 41, 345–410.
    [Google Scholar]
  33. Furque, G. (1963) Descripción Geológica de la Hoja 17b. Guandacol (Provincias de La Rioja y San Juan): Buenos Aires, Argentina Dirección Nacional de Geología y Minería, Boletín 92.
  34. Gillot, P.Y., Hildenbrand, A., Lefèvre, J.C. & Albore‐Livadie, C. (2006) The K/Ar dating method: principle, analytical techniques, and application to Holocene volcanic eruptions in Southern Italy. Acta Vulcanol., 18(2006), 55–66.
    [Google Scholar]
  35. Gutscher, M.‐A., Spakman, W., Bijwaard, H. & Engdahl, E.R. (2000) Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics, 19, 814–833.
    [Google Scholar]
  36. Hamza, V.M., Silva Dias, F.J.S., Gomes, A.J.L. & Delgadilho Terceros, Z.G. (2005) Numerical and functional representations of regional heat flow in South America. Phys. Earth Planet. Inter., 152, 223–256.
    [Google Scholar]
  37. Hoke, G.B., Giambiagi, L.B., Garzione, C.N., Mahoney, J.B. & Strecker, M.R. (2014) Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina. Earth Planet. Sci. Lett., 406, 153–164.
    [Google Scholar]
  38. Huang, W.‐L., Longo, J.L. & Pevear, D.R. (1993) An experimentally derived kinetic model for smectite‐to‐illite conversion and its use as a geothermometer. Clays Clay Miner., 41, 162–177.
    [Google Scholar]
  39. Hunziker, J.C., Frey, M., Clauer, N. & Dallmeyer, R.D. (1986) Reply to the comments on the evolution of illite to muscovite by J.R Glasmann. Contrib. Mineral. Petrol., 96, 75–77.
    [Google Scholar]
  40. Husson, L. & Moretti, S. (2002) Thermal regime of fold and thrust belts – an application to the Bolivian sub Andean zone. Tectonophysics, 345, 253–280.
    [Google Scholar]
  41. Johnson, N.M., Jordan, T.E., Johnsson, P.E. & Naeser, C.W. (1986) Magnetic Polarity Stratigraphy, Age and Tectonic Setting of Fluvial Sediments in an Eastern Andean Foreland Basin, San Juan Province, Argentina, Foreland Basins. (Ed. by P.E.Allen & P.Homewood ). Int. Assoc. Sedimentol. 8, 63–75.
    [Google Scholar]
  42. Jordan, T.E. & Alonso, R.N. (1987) Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20–28° South latitude. Am. Assoc. Pet. Geol. Bull., 71, 49–64.
    [Google Scholar]
  43. Jordan, T.E., Allmendinger, R.W., Damanti, J.F. & Drake, R.E. (1993) Chronology of motion in a complete thrust belt: the Precordillera, 30°‐31°, Andes Mountain. J. Geol., 101, 135–156.
    [Google Scholar]
  44. Jordan, T.E., Schlunegger, F. & Cardozo, N. (2001) Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. J. S. Am. Earth Sci., 14, 775–798.
    [Google Scholar]
  45. Kay, S.M. & Mpodozis, C. (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flatslab. J. S. Am. Earth Sci., 15, 39–59.
    [Google Scholar]
  46. Ketcham, R.A. (2005) Forward and inverse modeling of low‐temperature thermochronometry data. Rev. Mineral. Geochem., 58, 275–314.
    [Google Scholar]
  47. Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J. & Hurford, A.J. (2007) Improved modelling of fission‐track annealing in apatite. Am. Mineral., 92, 789–798.
    [Google Scholar]
  48. Lanson, B. (1997) Decomposition of experimental X‐Ray diffraction patterns (Profile fitting) a convenient way to study clay minerals. Clays Clay Miner., 45, 132–146.
    [Google Scholar]
  49. Lencinas, R. (1994) Los depósitos pleistocenos–holocenos del valle de Famatina, La Rioja, Argentina. 7th Congreso Geológico Chileno 1, 465–470.
  50. Limarino, C., Tripaldi, A., Marenssi, S., Net, L., Re, G. & Caselli, A. (2001) Tectonic control on the evolution of fluvial systems of the Vinchina Formation (Miocene), northwestern Argentina. J. S. Am. Earth Sci., 14, 751–762.
    [Google Scholar]
  51. Ludwig, K.Ý. (2003) Isoplot/Ex, rev. 2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a.
  52. Mareschal, J.C. & Jaupart, C. (2004) Variations of surface heat ow and lithospheric thermal structure beneath the North American craton. Earth Planet. Sci. Lett., 223, 65–77.
    [Google Scholar]
  53. Milana, J.P., Bercowski, F. & Jordan, T. (2003) Paleoambientes y magneto estratigrafía del Neógeno de la sierra de Mogna, y su relación con la Cuenca de Antepaís Andina. Rev. Asoc. Geol. Argentina, 58, 447–473.
    [Google Scholar]
  54. Moore, D.M. & Reynolds, R.C. (1997) X‐Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 378 pp.
    [Google Scholar]
  55. Nieto, F. & Abad, I. (2007) Clay‐slate evolution. Onset of metamorphism. Invited Lectures. Proceedings of the 11th EUROCLAY Conference, Aveiro, Portugal 34‐41.
  56. Nóbile, J., Collo, G. & Dávila, F.M. (2008) Transformación progresiva de minerales de arcilla durante el soterramento de la cuenca de Vinchina (Mioceno Tardío‐Plioceno), Sierras de los Colorados, La Rioja. XII Reunión Argentina de Sedimentología, Buenos Aires, 127.
  57. Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Proceedings of the 7th International (Ed. by Y.K.Kharaka and A.S.Maest ), 1251–1254. Symposium on Water‐Rock Interactions, Park City, Utah.
  58. Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proc. Natl Acad. Sci., 96, 3440–3446.
    [Google Scholar]
  59. Pollack, H.N., Hurter, S.J. & Johnston, J.R. (1993) Heat loss from the earth's interior: analysis of the global data set. Rev. Geophys., 31, 267–280.
    [Google Scholar]
  60. Ramos, V.A. (1970) Estratigrafía y estructura del Terciario en la sierra de los Colorados (Provincia de La Rioja), República Argentina. Rev. Asoc. Geol. Argentina, 25, 359–382.
    [Google Scholar]
  61. Ramos, V.A. (1999) Los depósitos sinorogénicos terciarios de la región andina. In: Geología Argentina (Ed. by R.Caminos ) Anales 29: 22, pp. 651–682. Instituto de Geología y Recursos Minerales, Buenos Aires.
    [Google Scholar]
  62. Ramos, V.A., Cristallini, E.O. & Pérez, D.J. (2002) The Pampean flat‐slab of the Central Andes. J. S. Am. Earth Sci., 15, 59–78.
    [Google Scholar]
  63. Re, G.H. & Barredo, S.P. (1993) Esquema de correlaciones de las formaciones terciarias aflorantes en el entorno de las Sierras Pampeanas y la Precordillera Argentina. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, 2, 172–179.
  64. Reiners, P.W., Ehlers, T.A. & Zeitler, P.K. (2005) Past, present, and future of thermochronology. Rev. Mineral. Geochem., 58, 1–18.
    [Google Scholar]
  65. Rettke, R.C. (1980) Probable burial diagenetic and provenance effects on the Dakota Group clay mineralogy, Denver basin. J. Sediment. Petrol., 51, 541–551.
    [Google Scholar]
  66. Reynolds, J.H., Jordan, T.E., Johnson, N.M., Damanti, J.F. & Tabbutt, K.D. (1990) Neogene deformation of the flat‐subduction segment of the Argentine‐Chilean Andes: magnetostratigraphy constraints from Las Juntas, La Rioja Province, Argentina. Geol. Soc. Am. Bull., 102, 1607–1622.
    [Google Scholar]
  67. Richardson, T., Ridgway, K.D., Gilbert, H., Martino, R., Enkelmann, E., Anderson, M. & Alvarado, P. (2013) Neogene and Quaternary tectonics of the Eastern Sierras Pampeanas, Argentina: active intraplate deformation inboard of flat‐slab subduction. Tectonics, 32, doi:10.1002/tect.20054.
    [Google Scholar]
  68. Sant' Anna, L.G., Clauer, N., Cordani, U.G., Riccomini, C., Velázquez, V.F. & Liewig, N. (2006) Origin and migration timing of hydrothermal fluids in sedimentary rocks of the Paraná Basin, South America. Chem. Geol., 230, 1–21.
    [Google Scholar]
  69. Srodon, J. (2007) Illitization of smectite and history of sedimentary basins. Proceedings of the 11th EUROCLAY Conference, Aveiro, Portugal, 74‐82.
  70. Środoń, J. (1981) X‐ray identification of randomly interstratified illite‐smectite in mixtures with discrete illite. Clay Miner., 16, 97–304.
    [Google Scholar]
  71. Środoń, J. (1999) Extracting K‐Ar ages from shales: a theoretical test. Clay Miner., 33, 375–378.
    [Google Scholar]
  72. Środoń, J., Clauer, N. & Eberl, D.D. (2002) Interpretation of K‐Ar dates of illitic clays from sedimentary rocks aided by modelling. Am. Mineral., 87, 1528–1535.
    [Google Scholar]
  73. Stockli, D.F., Dumitru, T.A., McWilliams, M.O. & Farley, K.A. (2003) Cenozoic tectonic evolution of the White Mountains, California and Nevada. Geol. Soc. Am. Bull., 115, 788–816.
    [Google Scholar]
  74. Tabbutt, K.D. (1986) Fission track chronology of foreland basins, in the eastern Andes: Magmatic and tectonic implications. Unpublished Thesis. Dartmouth College, Hannover, New Hampshire.
  75. Thomaz‐Filho, A. & Lima, V.Q. (1981) Datação radiométrica de rochas sedimentares pelíticas pelo método Rb‐Sr. Boletim Técnico. Da Petrobrás, 24(2), 109–119.
    [Google Scholar]
  76. Turner, J.C.M. (1964) Descripción geológica de la hoja 15 c Vinchina (Provincia de La Rioja). In: Carta geológico‐económica de la República Argentina Escala 1: 200.000. Dirección Nacional Geología y Minería. Boletín 100, 81 pp.
  77. Uysal, I.T. (1999) Mineralogy and isotope geochemistry of anthigenic clay and carbonate minerals in Late Permian coal measures, Bowen Basin, Queensland: Implications for thermal and fluid flow history. Ph.D. thesis, University of Queensland, Brisbane, Australia, 253 pp.
  78. Uysal, I.T., Glikson, M., . Golding, S.D. & Audsley, F. (2000) The thermal history of the Bowen Basin, Queensland, Australia: vitrinite reflectance and clay mineralogy of Late Permian coal measures. Tectonophysics, 323, 105–129.
    [Google Scholar]
  79. Van der Pluijm, B.A. & Haines, S.H. (2008) Radiometric Dating of Brittle Fault Rocks; Illite Polytype Age Analysis and Application to the Spanish Pyrenees. AGU, San Francisco.
    [Google Scholar]
  80. Velde, B. & Vasseur, G. (1992) Estimation of the diagenetic smectite to illite transformation in time–temperature space. Am. Mineral., 77, 967–976.
    [Google Scholar]
  81. Vergés, J., Ramos, E., Seward, D., Busquets, P. & Colombo, F. (2001) Miocene sedimentary and tectonic evolution of the Andean Precordillera at 31°S, Argentina. J. S. Am. Earth Sci., 14, 735–750.
    [Google Scholar]
  82. Whitman, D., Isacks, B.L. & Kay, S.M. (1996) Lithospheric structure and along‐strike segmentation of the Central Andean Plateau: seismic Q, magmatism, flexure, topography and tectonics. In: Geodynamics of the Andes (Ed. by J.F.Dewey & S.H.Lamb ), pp. 29, Elsevier, Amsterdam.
    [Google Scholar]
  83. Wolf, R.A., Farley, K.A. & Silver, L.T. (1996) Helium diffusion and low‐temperature thermochronometry of apatite. Geochim. Cosmochim. Acta, 60, 4231–4240.
    [Google Scholar]
  84. Wolf, R.A., Farley, K.A. & Wolf, D.M. (1998) Modelling of the temperature sensitivity of the apatite (U‐Th)/He thermochronometer. Chem. Geol., 148, 105–114.
    [Google Scholar]
  85. Yañez, G.A., Ranero, C.R., von Huene, R. & Diaz, J. (2001) Magnetic anomaly interpretation across the southern central Andes (32–34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J. Geophys. Res., 106, 6325–6345.
    [Google Scholar]
  86. Zapata, T.R. & Allmendinger, R. (1996) Thrust‐Front zone of the Precordillera, Argentina: a thick‐skinned triangle zone. Am. Assoc. Pet. Geol. Bull., 80, 359–381.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12163
Loading
/content/journals/10.1111/bre.12163
Loading

Data & Media loading...

Supplements

Theoretical framework. U–Pb data. Whole rock mineralogy of levels analysed in the four sections. Chemical analysis of identified grains.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error