1887
Volume 29, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto the Mesozoic and early Cenozoic rocks (predominantly Late Eocene–earliest Miocene) in northwestern New Zealand. Using low‐temperature thermochronology, we investigate the sedimentary provenance, burial and erosion histories of the rocks from both the hanging and footwalls of the allochthon. In central Northland (Parua Bay), both the overlying allochthon and underlying Early Miocene autochthon yield detrital zircon and partially reset apatite fission‐track ages that were sourced from the local Jurassic terrane and perhaps Late Cretaceous volcanics; the autochthon contains, additionally, material sourced from Oligocene volcanics. Thermal history modelling indicates that the lower part of the allochthon together with the autochthon was heated to . 55–100°C during the Late Oligocene and Early Miocene, most likely due to the burial beneath the overlying nappe sequences. From the Mesozoic basement exposed in eastern Northland, we obtained zircon fission‐track ages tightly bracketed between 153 and 149 Ma; the apatite fission‐track ages on the other hand, generally young towards the northwest, from 129 to 20.9 Ma. Basement thermochronological ages are inverted to simulate the emplacement and later erosion of the Northland Allochthon, using a thermo‐kinematic model coupled with an inversion algorithm. The results suggest that during the Late Oligocene, the nappes in eastern Northland ranged from . 4–6‐km thick in the north to zero in the Auckland region (over a distance >200 km). Following the allochthon emplacement, eastern Northland was uplifted and unroofed during the Early Miocene for a period of . 1–6 Myr at the rate of 0.1–0.8 km/Myr, leading to rapid erosion of the nappes. Since Middle Miocene, the basement uplift ceased and the erosion of the nappes and the region as a whole slowed down (. 0–0.2 km/Myr), implying a decay in the tectonic activity in this region.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12166
2015-12-30
2024-04-19
Loading full text...

Full text loading...

References

  1. Adams, C.J. & Maas, R. (2004) Age/Isotopic Characterisation of the Waipapa Group in Northland and Auckland, New Zealand, and Implications for the Status of the Waipapa Terrane. NZ J. Geol. Geophys., 47, 173–187.
    [Google Scholar]
  2. Adams, C.J., Mortimer, N., Campbell, H.J. & Griffin, W.L. (2013) Detrital Zircon Geochronology and Sandstone Provenance of Basement Waipapa Terrane (Triassic–Cretaceous) and Cretaceous Cover Rocks (Northland Allochthon and Houhora Complex) in Northern North Island, New Zealand. Geol. Mag., 150, 89–109.
    [Google Scholar]
  3. Ballance, P.F. & Spörli, K.B. (1979) Northland Allochthon. J. R. Soc. N. Z., 9, 259–275.
    [Google Scholar]
  4. Bradshaw, J.D. (2004) Northland Allochthon: an alternative hypothesis of origin. NZ J. Geol. Geophys., 47, 375–382.
    [Google Scholar]
  5. Braun, J. (2003) Pecube: A new finite‐element code to solve the 3d heat transport equation including the effects of a time‐varying, finite amplitude surface topography. Comput. Geosci., 29, 787–794.
    [Google Scholar]
  6. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon‐Labric, T. & Prigent, C. (2012) Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using pecube. Tectonophysics, 524–525, 1–28.
    [Google Scholar]
  7. Brown, R.W., Beucher, R., Roper, S., Persano, C., Stuart, F. & Fitzgerald, P. (2013) Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U–Th)/He Thermochronometer. Geochim. Cosmochim. Acta, 122, 478–497.
    [Google Scholar]
  8. Edbrooke, S.W. & Brook, F.J. (2009) Geology of the Whangarei Area. Institute of Geological & Nuclear Sciences, Lower Hutt.
    [Google Scholar]
  9. Evans, R.B. (1992) Tertiary tectonic development of Whangaroa District, Northeastern Northland, New Zealand. NZ J. Geol. Geophys., 35, 549–559.
    [Google Scholar]
  10. Flowers, R.M., Ketcham, R.A., Shuster, D.L. & Farley, K.A. (2009) Apatite (U–Th)/He Thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta, 73, 2347–2365.
    [Google Scholar]
  11. Galbraith, R.F. (2005) Statistics for Fission Track Analysis. Chapman and Hall/CRC Press, Boca Raton, FL.
    [Google Scholar]
  12. Gallagher, K. (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res.: Solid Earth, 117, B02408.
    [Google Scholar]
  13. Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M. & Stephenson, J. (2009) Markov Chain Monte Carlo (Mcmc) sampling methods to determine optimal models, model resolution and model choice for earth science problems. Mar. Pet. Geol., 26, 525–535.
    [Google Scholar]
  14. Gautheron, C., Tassan‐Got, L., Barbarand, J. & Pagel, M. (2009) Effect of alpha‐damage annealing on apatite (U–Th)/He Thermochronology. Chem. Geol., 266, 157–170.
    [Google Scholar]
  15. Hayward, B. (1993) The Tempestuous 10 Million Year Life of a Double Arc and Intra‐Arc Basin—New Zealand's Northland Basin in the Early Miocene. In: South Pacific Sedimentary Basins (Ed. by PFBallance ), pp. 113–142. Elsevier, Amsterdam, the Netherlands.
    [Google Scholar]
  16. Hayward, B.W., Brook, F.J. & Isaac, M.J. (1989) Cretaceous to middle Tertiary stratigraphy, paleogeography and tectonic history of Northland, New Zealand. In: Geology of Northland: Accretion, Allochthouns and Arcs at the Edge of the New Zealand Micro‐Continent (Ed. by K.B.Spörli & D.Kear ), 26, pp. 47–64. Royal Society of New Zealand Bulletin, Wellington, New Zealand.
    [Google Scholar]
  17. Hayward, B.W., Black, P.M., Smith, I.E.M., Ballance, P.F., Itaya, T., Doi, M., Takagi, M., Bergman, S., Adams, C.J., Herzer, R.H. & Robertson, D.J. (2001) K‐Ar Ages of early Miocene arc‐type volcanoes in Northern New Zealand. NZ J. Geol. Geophys., 44, 285–311.
    [Google Scholar]
  18. Herzer, R.H. (1995) Seismic stratigraphy of a buried volcanic arc, Northland, New Zealand and implications for neogene subduction. Mar. Pet. Geol., 12, 511–531.
    [Google Scholar]
  19. Hurford, A.J. & Green, P.F. (1983) The zeta age calibration of fission‐track dating. Chem. Geol., 41, 285–317.
    [Google Scholar]
  20. Isaac, M.J., Herzer, R.H., Brook, F.J. & Hayward, B.W. (1994) Cretaceous and Cenozoic Sedimentary Basins of Northland, New Zealand. Institute of Geological & Nuclear Sciences, Lower Hutt.
    [Google Scholar]
  21. Jasra, A., Stephens, D., Gallagher, K. & Holmes, C. (2006) Bayesian mixture modelling in geochronology Via Markov Chain Monte Carlo. Math. Geol., 38, 269–300.
    [Google Scholar]
  22. Jiao, R., Seward, D., Little, T.A. & Kohn, B.P. (2014) Thermal history and exhumation of basement rocks from Mesozoic to Cenozoic Subduction Cycles, Central North Island, New Zealand. Tectonics, 33, 2014TC003653.
    [Google Scholar]
  23. Ketcham, R.A., Donelick, R.A. & Carlson, W.D. (1999) Variability of apatite fission‐track annealing kinetics; Iii, extrapolation to geological time scales. Am. Mineral., 84, 1235–1255.
    [Google Scholar]
  24. King, P.R. (2000) Tectonic reconstructions of New Zealand: 40 Ma to the present. NZ J. Geol. Geophys., 43, 611–638.
    [Google Scholar]
  25. Laird, M.G. & Bradshaw, J.D. (2004) The break‐up of a long‐term relationship: the cretaceous separation of New Zealand from Gondwana. Gondwana Res., 7, 273–286.
    [Google Scholar]
  26. Mortimer, N., Tulloch, A.J., Spark, R.N., Walker, N.W., Ladley, E., Allibone, A. & Kimbrough, D.L. (1999) Overview of the Median Batholith, New Zealand: a new interpretation of the geology of the Median Tectonic Zone and Adjacent Rocks. J. Afr. Earth Sci., 29, 257–268.
    [Google Scholar]
  27. Mortimer, N., Herzer, R.H., Walker, N.W., Calvert, A.T., Seward, D. & Chaproniere, G.C.H. (2003) Cavalli Seamount, Northland Plateau, Sw Pacific Ocean: a Miocene metamorphic core complex?J. Geol. Soc., 160, 971–983.
    [Google Scholar]
  28. Mortimer, N., Herzer, R.H., Gans, P.B., Laporte‐Magoni, C., Calvert, A.T. & Bosch, D. (2007) Oligocene‐Miocene tectonic evolution of the South Fiji basin and Northland Plateau, Sw Pacific Ocean: evidence from petrology and dating of dredged rocks. Mar. Geol., 237, 1–24.
    [Google Scholar]
  29. Mortimer, N., Gans, P.B., Palin, J.M., Meffre, S., Herzer, R.H. & Skinner, D.N.B. (2010) Location and migration of Miocene‐quaternary volcanic arcs in the Sw Pacific Region. J. Volcanol. Geoth. Res., 190, 1–10.
    [Google Scholar]
  30. Rait, G.J. (2000) Thrust transport directions in the Northland Allochthon, New Zealand. NZ J. Geol. Geophys., 43, 271–288.
    [Google Scholar]
  31. Raza, A., Brown, R.W., Ballance, P.F., Hill, K.C. & Kamp, P.J.J. (1999) Thermal history of the Early Miocene Waitemata Basin and Adjacent Waipapa Group, North Island, New Zealand. NZ J. Geol. Geophys., 42, 469–488.
    [Google Scholar]
  32. Reyes, A.G. (2007) Abondoned oil and gas wells – a Reconnaissance Study of an unconventional geothermal resource. GNS Sci. Rep., 2007(23), 36.
    [Google Scholar]
  33. Salmon, M., Kennett, B.L.N., Stern, T. & Aitken, A.R.A. (2013) The Moho in Australia and New Zealand. Tectonophysics, 609, 288–298.
    [Google Scholar]
  34. Sambridge, M. (1999a) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int., 138, 479–494.
    [Google Scholar]
  35. Sambridge, M. (1999b) Geophysical inversion with a neighbourhood algorithm—Ii. Appraising the ensemble. Geophys. J. Int., 138, 727–746.
    [Google Scholar]
  36. Spörli, K.B. & Harrison, R.E. (2004) Northland Allochthon infolded into basement, Whangarei Area, Northern New Zealand. NZ J. Geol. Geophys., 47, 391–398.
    [Google Scholar]
  37. Spörli, K.B. & Rowland, J.V. (2007) Superposed deformation in Turbidites and Syn‐Sedimentary Slides of the tectonically active Miocene Waitemata Basin, Northern New Zealand. Basin Res., 19, 199–216.
    [Google Scholar]
  38. Stern, T.A., Stratford, W.R. & Salmon, M.L. (2006) Subduction evolution and mantle dynamics at a Continental Margin: Central North Island, New Zealand. Rev. Geophys., 44, RG4002.
    [Google Scholar]
  39. Tagami, T., Galbraith, R.F., Yamada, R. & Laslett, G.M. (1998) Revised Annealing Kinetics of Fission Tracks in Zircon and Geological Implications. In: Advances in Fission‐Track Geochronology (Ed. by P.Van Den Haute , F.De Corte ), pp. 99–112. Kluwer academic publishers, Dordrecht, the Netherlands.
    [Google Scholar]
  40. Tulloch, A.J., Ramezani, J., Mortimer, N., Mortensen, J., van den Bogaard, P. & Maas, R. (2009) Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a Precursor to Final Gondwana Break‐Up. Geol. Soc. London Spec. Publ., 321, 89–118.
    [Google Scholar]
  41. Vermeesch, P. (2010) HelioPlot, and the treatment of overdispersed (U‐Th‐Sm)/He data. Chem. Geol., 271, 108–111.
    [Google Scholar]
  42. Vermeesch, P. (2012) On the visualisation of detrital age distributions. Chem. Geol., 312–313, 190–194.
    [Google Scholar]
  43. Vermeesch, P. & Tian, Y. (2014) Thermal history modelling: Hefty Vs. Qtqt. Earth‐Sci. Rev., 139, 279–290.
    [Google Scholar]
  44. Wessel, P. & Smith, W.H.F. (1998) New, improved version of generic mapping tools released. Eos, Transact. Am. Geophys. Union, 79, 579.
    [Google Scholar]
  45. Whattam, S.A., Malpas, J., Ali, J.R., Lo, C.‐H. & Smith, I.E.M. (2005) Formation and emplacement of the Northland Ophiolite, Northern New Zealand: Sw Pacific Tectonic Implications. J. Geol. Soc., 162, 225–241.
    [Google Scholar]
  46. Whattam, S.A., Malpas, J., Smith, I.E.M. & Ali, J.R. (2006) Link between Ssz Ophiolite formation, emplacement and arc inception, Northland, New Zealand: U‐Pb Shrimp Constraints; Cenozoic Sw Pacific Tectonic Implications. Earth Planet. Sci. Lett., 250, 606–632.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12166
Loading
/content/journals/10.1111/bre.12166
Loading

Data & Media loading...

Supplements

Lower hemisphere equal‐area projections of poles to beddings in the Early Miocene strata.

PDF

Thermal history modelling results (approaches B and C) of the allochthon (green) and autochthon (orange) from Parua Bay using QTQt (Gallagher, 2012).

PDF

Radial plots of the ZFT and AFT ages from the Waipapa Terrane, using DensityPlotter (Vermeesch, 2012).

PDF

Thermal histories predicted by the thermo‐kinematic (Pecube) model.

PDF

AFT length distribution predicted by the thermo‐kinematic (Pecube) model vs. observation (histograms).

PDF

Variation in the inversion results in relationship with the prescribed (a) surface and (b) basal temperatures in the thermo‐kinematic (Pecube) model.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error