1887
Volume 29, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Despite many years of study, the processes involved in the development of the continental margin of southern Africa and the distinctive topography of the hinterland remain poorly understood. Previous thermochronological studies carried out within a monotonic cooling framework have failed to take into account constraints provided by Mesozoic sedimentary basins along the southern margin. We report apatite fission track analysis and vitrinite reflectance data in outcrop samples from the Late Jurassic to Early Cretaceous sedimentary fill of the Oudtshoorn, Gamtoos and Algoa Basins (Uitenhage Group), as well as isolated sedimentary remnants further west, plus underlying Paleozoic rocks (Cape Supergroup) and Permian‐Triassic sandstones from the Karoo Supergroup around the Great Escarpment. Results define a series of major regional cooling episodes. Latest Triassic to Early Jurassic cooling which began between 205 and 180 Ma is seen dominantly in basement flanks to the Algoa and Gamtoos Basins. This episode may have affected a wider region but in most places any effects have been overprinted by later events. The effects of Early Cretaceous (beginning between 145 and 130 Ma) and Early to mid‐Cretaceous (120–100 Ma) cooling are both delimited by major structures, while Late Cretaceous (85–75 Ma) cooling appears to have affected the whole region. These cooling events are all interpreted as dominantly reflecting exhumation. Higher Late Cretaceous paleotemperatures in samples from the core of the Swartberg Range, coupled with evidence for localised Cenozoic cooling, are interpreted as representing Cenozoic differential exhumation of the mountain range. Late Cretaceous paleotemperatures between 60°C and 90°C in outcropping Uitenhage Group sediments from the Oudtshoorn, Gamtoos and Algoa Basins require burial by between 1.2 and 2.2 km prior to Late Cretaceous exhumation. Because these sediments lie in depositional contact with underlying Paleozoic rocks in many places, relatively uniform Late Cretaceous paleotemperatures across most of the region, in samples of both basin fill and underlying basement, suggest the whole region may have been buried prior to Late Cretaceous exhumation. Cenozoic cooling (beginning between 30 and 20 Ma) is focussed mainly in mountainous regions and is interpreted as representing denudation which produced the modern‐day relief. Features such as the Great Escarpment are not related to continental break up, as is often supposed, but are much younger (post‐30 Ma). This history of post‐breakup burial and subsequent episodic exhumation is very different from conventional ideas of passive margin evolution, and requires a radical re‐think of models for development of continental margins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12167
2016-01-05
2024-04-25
Loading full text...

Full text loading...

References

  1. Amante, C. & Eakins, B.W. (2009) ETOPO1 1 Arc‐Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC‐24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M.
  2. Barbarand, J., Carter, A., Wood, I. & Hurford, A.J. (2003) Compositional and structural control of fission track annealing in apatite. Chem. Geol., 198, 107–137.
    [Google Scholar]
  3. Bate, K.J. & Malan, J.A. (1992) Tectonostratigraphic evolution of the Algoa, Gamtoos and Pletmos Basins, offshore South Africa. In: Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (Ed. by M.J.de Wit & I.G.D.Ransome ), pp. 61–73. Balkema, Rotterdam.
    [Google Scholar]
  4. Beckering Vinckers, J. (2007) Area D. Offshore Algoa Basin. Republic of South Africa 2007 Licence Round, pp. 60. Petroleum Agency SA, Capetown.
    [Google Scholar]
  5. Beckering Vinckers, J. & Jensen, T. (2005) Oil potential in the Algoa basin offshore South Africa. Poster. 18th World Petroleum Congress. South Africa.
  6. Blenkinsop, T. & Moore, A. (2013) Tectonic geomorphology of passive margins and continental hinterlands. In: Treatise on Geomorphology (Ed. by J.F.Shroder ), vol. 5, pp. 71–92. Academic Press, San Diego.
    [Google Scholar]
  7. Bonow, J.M., Japsen, P. & NielsenT.F.D. (2014) High‐level landscapes along the margin of southern East Greenland – a record of tectonic uplift and incision after breakup in the NE Atlantic. Global Planet. Change, 116, 10–29.
    [Google Scholar]
  8. Braun, J., Guillocheau, F., Robin, C., Baby, G. & Jelsma, H. (2014) Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell. J. Geophys. Res., 119, 6093–6112.
    [Google Scholar]
  9. Broad, D.S., Jungslager, E.H.A., Clachan, I.R. & Roux, J. (2009) Offshore Mesozoic basins. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaesseur & R.J.Thomas ), Chapter 26, pp. 553–571. Council for Geoscience, Pretoria.
    [Google Scholar]
  10. Brodie, J. & White, N. (1994) Sedimentary basin inversion caused by igneous underplating: northwest European continental shelf. Geology, 22, 147–150.
    [Google Scholar]
  11. Brown, R.W., Rust, D.J., Summerfield, M.A., Gleadow, A.J.W. & De Wit, M.C.J. (1990) An accelerated Cretaceous phase of accelerated erosion on the south‐western margin of Africa: evidence from apatite fission track analysis and the offshore sedimentary record. Nucl. Tracks Radiat. Meas., 17, 339–350.
    [Google Scholar]
  12. Brown, R.W.,K., Gleadow, A.J.W. & Summerfield, M.A. (1998) Morphotectonic evolution of the South Atlantic margins of Africa and South America. In: Geomorphology and Global Tectonics (Ed. by M.A.Summerfield ), pp. 255–281. Wiley, Chichester.
    [Google Scholar]
  13. Brown, R.W., Summerfield, M.A. & Gleadow, A.J.W. (2002) Denudational history along a transect across the Drakensberg Escarpment of southern Africa derived from apatite fission track thermochronology. J. Geophys. Res., 107, 2350.
    [Google Scholar]
  14. Brown, R.W., Summerfield, M.A., Gleadow, A.J.W., Gallagher, K., Carter, A., Beucher, R. & Wildman, M. (2014) Intracontinental deformation in southern Africa during the Late Cretaceous. J. Afr. Earth Sc., 100, 20–41.
    [Google Scholar]
  15. Burke, K. & Gunnell, Y. (2008) The Africa Erosion Surface: A Continental‐Scale Synthesis of Geomorphology, Tectonics and Environmental Change Over the Past 180 Million Years, pp. 201. Geological Society of America, Memoirs.
    [Google Scholar]
  16. Burnham, A.K. & Sweeney, J.J. (1989) A chemical kinetic model of vitrinite reflectance maturation. Geochim. Cosmochim. Acta, 53, 2649–2657.
    [Google Scholar]
  17. Carlson, W.D., Donelick, R.A. & Ketcham, R.A. (1999) Variability of apatite fission‐track annealing kinetics: I. Experimental results. Am. Mineral., 84, 1213–1223.
    [Google Scholar]
  18. Catuneanu, O., Wopfner, H., Eriksson, P.G., Cairncross, B., Rubidge, B.S., Smith, R.M.H. & Hancox, P.J. (2005) The Karoo basins of south‐central Africa. J. Afr. Earth Sc., 43, 211–253.
    [Google Scholar]
  19. Cloetingh, S. & Burov, E. (2011) Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Res., 23, 257–290.
    [Google Scholar]
  20. Cobbold, P.R., Meisling, K.E. & Mount, V.S. (2001) Re‐activation of an obliquely rifted margin, Campos and Santos Basins, southeastern Brazil. Am. Assoc. Pet. Geol. Bull., 85, 1925–1944.
    [Google Scholar]
  21. Cobbold, P.R., Rossello, E.A., Roperch, P., Arriagada, C., Gómez, L.A. & Lima, C. (2007) Distribution, timing, and causes of Andean deformation across South America. In: Deformation of the Continental Crust: The Legacy of Mike Coward (Ed. by RiesA.C. , ButlerR.W.H. & GrahamR.H. ), Geological Society London Spec. Publ., 272, 583–592.
    [Google Scholar]
  22. Cook, A.C.
    (ed.) (1982) The Origin and Petrology of Organic Matter in Coals, oil Shales and Petroleum Source Rocks, pp. 106. The University of Wollongong, Wollongong, NSW.
    [Google Scholar]
  23. Dingle, R.V., Siesser, W.G. & Newton, A.R. (1983) Mesozoic and Tertiary Geology of Southern Africa, pp. 375. A.A. Balkema, Rotterdam.
    [Google Scholar]
  24. Duncan, R.A., Hooper, P.R., Rehacek, J., Marsh, J.S. & Duncan, R.A. (1997) The timing and duration of the Karoo igneous event, southern Gondwana. J. Geophys. Res., 102, 18127–18138.
    [Google Scholar]
  25. Erlanger, E.D., Granger, D.E. & Gibbon, R.J. (2012) Rock uplift rates in South Africa from isochron dating of fluvial and marine terraces. Geology, 40, 119–1022.
    [Google Scholar]
  26. Galbraith, R.F. (2005) Statistics for Fission Track Analysis. Chapman and Hall/CRC, London.
    [Google Scholar]
  27. Gallagher, K. & Brown, R. (1999a) Denudation and uplift at passive margins: the record on the Atlantic Margin of Southern Africa. Philos. Trans. R. Soc. Lond., 357, 835–859.
    [Google Scholar]
  28. Gallagher, K. & Brown, R. (1999b) The Mesozoic denudation history of the Atlantic margins of southern Africa and southeast Brazil and the relationship to offshore sedimentation. In: The Oil and Gas Habitats of the South Atlantic (Ed. by CameronN.R. , BateR.H. & ClureV.S. ), Geological Society of London Spec. Publ., 153, 412–453.
    [Google Scholar]
  29. Gradstein, F.M., Ogg, J.G., Schmidtz, M.D. & Ogg, G.M. (2012) A Geologic Time Scale 2012, Elsevier BV, Cambridge.
    [Google Scholar]
  30. Green, P.F. (1986) On the thermo‐tectonic evolution of Northern England: evidence from fission track analysis. Geol. Mag., 123, 493–506.
    [Google Scholar]
  31. Green, P.F. & Duddy, I. (2010) Synchronous exhumation events around the Arctic including examples from Barents Sea and Alaska North Slope. In: Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference (Ed. by B.A.Vining , S.C.Pickering ), pp. 633–644. Geological Society, London.
    [Google Scholar]
  32. Green, P.F. & Duddy, I.R. (2012) Thermal history reconstruction in sedimentary basins using apatite fission‐track analysis and related techniques. In: Analyzing the Thermal History of Sedimentary Basins: Methods and Case Histories (Ed. by HarrisN.D. & PetersK. ), SEPM Spec. Publ., 11, 65–104.
    [Google Scholar]
  33. Green, P.F., Swart, R., Jacob, J., Ward, J. & Bluck, B. (2009) Thermochronology and landscape development in Southern Africa. PESGB/HGS Africa Meeting (London), extended abstract.
  34. Green, P.F., Japsen, P.J., Chalmers, J.A. & Bonow, J.M. (2011) Erosion surfaces and missing section in West Greenland. J. Geol. Soc., 168, 817–829.
    [Google Scholar]
  35. Green, P.F., Lidmar‐Bersgtröm, K., Japsen, P.J., Bonow, J.M. & Chalmers, J.A. (2013) Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins. Geol. Surv. Den. Greenl. Bull., 30, 150.
    [Google Scholar]
  36. Gunnell, Y., Gallagher, K., Carter, A., Widdowson, M. & Hurford, A.J. (2003) Denudation history of the continental margin of Peninsular India since the early Mesozoic – reconciling apatite fission‐track data with geomorphology. Earth Planet. Sci. Lett., 67, 1–15.
    [Google Scholar]
  37. Hanson, E.K., Moore, J.M., Bordy, E.M., Marsh, J.S., Howarth, G. & Robey, J.V.A. (2009) Cretaceous erosion in central South Africa: evidence from crustal xenoliths in kimberlite diatremes. S. Afr. J. Geol., 112, 125–140.
    [Google Scholar]
  38. Harman, R., Gallagher, K., Brown, R. & Raza, A., Bizzi, L. (1998) Accelerated denudation and tectonic/geomorphic reactivation of the cratons of northeastern Brazil during the Late Cretaceous. J. Geophys. Res. Solid Earth, 103, 27091–27105.
    [Google Scholar]
  39. Hill, R.S. (1992) Suurberg Group, Including the Slagboom, Coerney and Mimosa Formations. Volume 4. Catalogue of South African Lithostratigraphic Units. Council for Geoscience, Pretoria.
    [Google Scholar]
  40. Houseman, G., McKenzie, D. & Molnar, P. (1981) Convective instability of a thickened boundary layer and its relevance for thermal evolution of continental convergent belts. J. Geophys. Res., 86, 6115–6132.
    [Google Scholar]
  41. Hurford, A.J. & Green, P.F. (1983) The zeta age calibration of fission‐track dating. Chem. Geol., 1, 285–317.
    [Google Scholar]
  42. Japsen, P., Green, P.F. & Chalmers, J.A. (2005) Separation of Palaeogene and Neogene uplift on Nuussuaq, West Greenland. J. Geol. Soc. London, 162, 299–314.
    [Google Scholar]
  43. Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A. & Lidmar‐Bergström, K. (2006) Elevated passive continental margins: long‐term highs or Neogene uplifts? New evidence from West Greenland. Earth Planet. Sci. Lett., 248, 315–324.
    [Google Scholar]
  44. Japsen, P., Green, P.F., Bonow, J.M., Rasmussen, E.S., Chalmers, J.A. & Kjennerud, T. (2010) Episodic uplift and exhumation along North Atlantic passive margins: implications for hydrocarbon prospectivity. In: Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference (Ed. by B.A.Vining , S.C.Pickering ), pp. 979–1004. Geological Society, London.
    [Google Scholar]
  45. Japsen, P., Chalmers, J.A., Green, P.F. & Bonow, J.M. (2012a) Elevated passive continental margins: not rift shoulders but expressions of episodic post‐rift burial and exhumation. Global Planet. Change, 90–91, 73–86.
    [Google Scholar]
  46. Japsen, P., Bonow, J.M., Green, P.F., Cobbold, P.R., Chiossi, D., Lilletveit, R., Magnavita, L.P. & Pedreira, A. (2012b) Episodic burial and exhumation in NE Brazil after opening of the South Atlantic. Bull. Geol. Soc. Am., 124, 800–816.
    [Google Scholar]
  47. Japsen, P., Green, P.F., Bonow, J.M., Nielsen, T.F.D. & Chalmers, J.A. (2014) From volcanic plains to glaciated peaks: burial and exhumation history of southern East Greenland after opening of the NE Atlantic. Global Planet. Change, 116, 91–114.
    [Google Scholar]
  48. Jelsma, H.A., de Wit, M.J., Thiart, C., Dirks, P.H.G.M., Viola, G., Basson, I.J. & Anckar, E. (2004) Preferential distribution along transcontinental corridors of kimberlites and related rocks of southern Africa. S. Afr. J. Geol., 107, 301–324.
    [Google Scholar]
  49. Jelsma, H., Barnett, W., Richards, S. & Lister, G. (2009) Tectonic setting of kimberlites. Lithos, 112, 155–165.
    [Google Scholar]
  50. Johnson, M.R., Anhaesseur, C.R. & Thomas, R.J. (2009) The Geology of South Africa, pp. 691. Council for Geoscience, Pretoria.
    [Google Scholar]
  51. Jourdan, F., Feraud, G., Bertrand, H., Kampunzu, A.B., Tshoso, G., Watkeys, M. & Le Gall, B. (2005) Karoo large igneous province: brevity, origin and relation to mass extinction questioned by new 40Ar/39Ar data. Geology, 33, 745–748.
    [Google Scholar]
  52. Kempf, J. (2010) Morphotectonics and denudation in the landform history of the Namibian Great Escarpment landscapes. Z. Geomorph., 54, 347–376.
    [Google Scholar]
  53. King, L.C. (1951) South African Scenery, 2nd edn, pp. 379. Oliver and Boyd, Edinburgh.
    [Google Scholar]
  54. King, L.C. (1967) The Morphology of the Earth, 2nd edn. Oliver and Boyd, Edinburgh.
    [Google Scholar]
  55. King, L.C. (1972). The Natal Monocline: Explaining the Origin and Scenery of Natal, South Africa, 134 pp. Geology Department, University of Natal, Durban.
    [Google Scholar]
  56. Kounov, A., Viola, G., De Wit, M. & Andreoli, M.A.G. (2008) A Mid Cretaceous paleo‐Karoo River valley across the Knersvlakte plain (northwestern coast of South Africa) from apatite fission‐track analysis Evidence. S. Afr. J. Geol., 111, 409–420.
    [Google Scholar]
  57. Kounov, A., Viola, G., De Wit, M. & Andreoli, M.A.G. (2009) Denudation along the Atlantic passive margin: new insights from apatite fission‐track analysis on the western coast of South Africa. In: Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models (Ed. by LiskerF. , VenturaB. & GlasmacherU.A. ), Geological Society, London Spec. Publ., 324, 287–306.
    [Google Scholar]
  58. Kounov, A., Viola, G., Dunkl, I. & Frimmel, H.E. (2013) Southern African perspectives on the long‐term morpho‐tectonic evolution of cratonic interiors. Tectonophysics, 601, 177–191.
    [Google Scholar]
  59. Lewis, C.A. (1995) The Geomorphological Evolution of the Area Between Grahamstown and the Indian Ocean, pp. 38. Rhodes University, Grahamstown.
    [Google Scholar]
  60. Lithgow‐Bertelloni, C. & Silver, P. (1998) Dynamic topography, plate driving forces and the African superswell. Nature, 395, 269–272.
    [Google Scholar]
  61. Macdonald, D., Gomez‐Perez, I., Franzese, J., Spalletti, L., Lawver, L., Gahagan, L., Dalziel, I., Thomas, C., Trewin, N., Holoe, M. & Paton, D. (2003) Mesozoic break‐up of SW Gondwana: implications for regional hydrocarbon potential of the southern South Atlantic. Mar. Pet. Geol., 20, 287–308.
    [Google Scholar]
  62. Macdonald, J., Holford, S.P., Green., P.F., Duddy, I.R., King, R.C. & Backe, G. (2013) Detrital zircon data reveal the origin of Australia's largest delta system. J. Geol. Soc., 170, 3–6.
    [Google Scholar]
  63. MacGregor, D.S. (2012). Late Cretaceous‐Cenozoic sediment and turbidite reservoir supply to South Atlantic margins. In: 2012. Conjugate Divergent Margins (Ed. by MohriakW.U. , DanforthA. , PostP.J. , BrownD.E. , TariG.C. , NemcokM. & SinhaS.T. ), Geological Society, London Spec. Publ., 369, doi:10.1144/SP369.7.
    [Google Scholar]
  64. McMillan, I.K. (2003) Foraminiferally defined biostratigraphic episodes and sedimentation pattern of the Cretaceous drift succession (Early Barremian to late Maastrichtian) in seven basins on the South African and southern Namibian continental margin. S. Afr. J. Sci., 99, 537–576.
    [Google Scholar]
  65. Molnar, P. & England, P. (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?Nature, 346, 29–34.
    [Google Scholar]
  66. Moore, A., Blenkinsop, T. & Cotterill, F. (2008) Controls on post‐Gondwana alkaline volcanism in southern Africa. Earth Planet. Sci. Lett., 268, 151–164.
    [Google Scholar]
  67. Moore, A., Blenkinsop, T. & Cotteril, F. (2009) Southern African topography and erosion history: plumes or tectonics?Terra Nova, 21, 310–315.
    [Google Scholar]
  68. Newton, A.R., Shone, R.W. & Booth, P.W.K. (2009) The cape fold belt. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaesseur & R.J.Thomas ), Chapter 24, pp. 521–530. Council for Geoscience, Pretoria.
    [Google Scholar]
  69. Ollier, C.D. & Marker, M.E. (1985) The great escarpment of southern Africa. Z. Geomorph. Suppl., 54, 37–56.
    [Google Scholar]
  70. Ollier, C.D. & Pain, C.F. (1997) Equating the basal unconformity with the palaeoplain: a model for passive margins. Geomorphology, 19, 1–15.
    [Google Scholar]
  71. Partridge, T.C. (1998) Of diamonds, dinosaurs and diastrophism: 150 Myr if landscape evolution in southern Africa. S. Afr. J. Geol., 10, 167–184.
    [Google Scholar]
  72. Partridge, T.C. & Maud, R.R. (1987) Geomorphic evolution of southern Africa since the Mesozoic. S. Afr. J. Geol., 90, 179–208.
    [Google Scholar]
  73. Paton, D.A. (2012) Post‐rift deformation of the North East and South Atlantic margins: are passive margins really passive? In: Tectonics of Sedimentary Basins: Recent Advances (Ed. by C.A.Busby & A.Azor ), 647 pp. Blackwell Publishing Ltd, Chichester.
    [Google Scholar]
  74. Paton, D.A. & Underhill, J.R. (2004) Role of crustal anisotropy in modifying the structural and sedimentological evolution of extensional basins: the Gamtoos Basin, South Africa. Basin Res., 16, 339–359.
    [Google Scholar]
  75. Paton, D.A., van der Spuy, D., di Primio, R. & Horsfield, B. (2008) Tectonically induced adjustment of passive‐margin accommodation space; influence on the hydrocarbon potential of the Orange Basin, South Africa. AAPG Bull., 92, 589–609.
    [Google Scholar]
  76. Raab, M.J., Brown, R.W., Gallagher, K., Carter, A. & Webber, K. (2002) Late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics, 349, 75–92.
    [Google Scholar]
  77. Raab, M.J., Brown, R.W., Gallagher, K., Webber, K. & Gleadow, A.J.W. (2005) Denudational and thermal history of the Early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia's passive margin. Tectonics, 24, TC3006.
    [Google Scholar]
  78. Redfield, T.F. (2010) On fission track dating and the Tertiary evolution of West Greenland topography. J. Geol. Soc. London, 167, 261–271.
    [Google Scholar]
  79. Roberts, G. & White, N. (2010) Estimating uplift rate histories from river profiles using African examples. J. Geophys. Res., 115, B02406.
    [Google Scholar]
  80. Roberts, D.L., Viljoen, J.H.A., Macey, P., Nhleko, L., Cole, D.I., Chevallier, L., Gibson, L. & Stapelberg, F. (2008) The Geology of George and Environs. 1:50,000 map Sheet Explanation, pp. 76. Council for Geoscience, Pretoria.
    [Google Scholar]
  81. Roberts, D.L., Botha, G.A., Maud, R.R. & Pether, J. (2009) Coastal Cenozoic deposits. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaesseur & R.J.Thomas ), Chapter 29, pp. 585–604. Council for Geoscience, Pretoria.
    [Google Scholar]
  82. Scharf, T., Codilean, A.T., de Wit, M., Jansen, J.D. & Kubik, P.W. (2013) Strong rocks sustain ancient post‐orogenic topography in southern Africa. Geology, 41, 331–334.
    [Google Scholar]
  83. Shone, R.W. (2009) Onshore post‐Karoo Mesozoic deposits. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaesseur & R.J.Thomas ), Chapter 26, pp. 541–552. Council for Geoscience, Pretoria.
    [Google Scholar]
  84. Simon, N.S.C. & Podladchikov, Y.Y. (2008) The effect of mantle composition of density in the extending lithosphere. Earth Planet. Sci. Lett., 272, 148–157.
    [Google Scholar]
  85. Smith, R.M.H. (1986) Sedimentation and palaeoenvironments of Late Cretaceous crater‐lake deposits in Bushmanland, South Africa. Sedimentology, 33, 369–386.
    [Google Scholar]
  86. Stanley, J.R., Flowers, R.M. & Bell, D.R. (2013) Kimberlite (U‐Th)/He dating links surface erosion with lithospheric heating, thinning, and metasomatism in the southern African Plateau. Geology, 41, 1243–1246.
    [Google Scholar]
  87. Stevenson, I.R. & McMillan, I.K. (2004) Incised valley fill stratigraphy of the Upper Cretaceous succession, proximal Orange Basin, Atlantic margin of southern Africa. J. Geol. Soc., 161, 185–208.
    [Google Scholar]
  88. Svensen, H., Corfu, F., Polteau, S., Hammer, Ø. & Planke, S. (2012) Rapid magma emplacement in the Karoo Large Igneous Province. Earth Planet. Sci. Lett., 325–326, 1–9.
    [Google Scholar]
  89. Tankard, A., Welsink, H., Aukes, P., Newton, R. & Stettler, E. (2009) Tectonic evolution of the Cape and Karoo basins of South Africa. Mar. Pet. Geol., 26, 1379–1412.
    [Google Scholar]
  90. Tinker, J., de Wit, M. & Brown, R. (2008a) Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, 455, 77–93.
    [Google Scholar]
  91. Tinker, J., de Wit, M. & Brown, R. (2008b) Linking source and sink: evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break‐up, South Africa. Tectonophysics, 455, 94–103.
    [Google Scholar]
  92. Turner, J.P., Green, P.F., Holford, S.P. & Lawrence, S.R. (2008) Thermal history of the Rio Muni (West Africa)–NE Brazil margins during continental breakup. Earth Planet. Sci. Lett., 270, 354–367.
    [Google Scholar]
  93. Viljoen, J.H.A., Stapelberg, F.D.J. & Cloete, M. (2010) Technical Report on the Geological Storage of Carbon Dioxide in South Africa, pp. 238 Council for Geoscience, Pretoria.
    [Google Scholar]
  94. de Wit, M.J. (2007) The Kalahari Epeiorogeny and climate change: differentiating cause and effect from core to space. Inkaba ye Africa special volume. S. Afr. J. Geol., 110, 367–392.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12167
Loading
/content/journals/10.1111/bre.12167
Loading

Data & Media loading...

Supplements

Supplementary information.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error