1887
Volume 23, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

We investigate the permeability and flow effects of deformation bands in porous granular carbonate rocks in Malta and use results from flow simulations to discuss the practical implications of deformation bands in carbonate and siliciclastic reservoirs rocks in general. Image- and laboratory-based analyses of deformation bands show permeabilities that are 1 – 2 orders of magnitude lower than the adjacent host rocks. Small-scale outcrop-based flow models (1 × 1 m) focus on the effect of deformation band on flow at the scale of individual bands. Two-phase flow simulations (water displacing oil) show that at the local scale a decrease in deformation band permeability led to increasing flow complexity, reduced and irregular waterfront propagation and reduction in sweep efficiency. A reduction in host rock permeability is associated with increased sensitivity to deformation bands. In low-permeable host rocks, a single magnitude-order reduction of deformation band permeability significantly delays flow, whereas in higher-permeable host rocks the effect is less pronounced. Hence, in some cases, deformation bands may represent a significant impediment to flow already when they are only 1 – 2 orders of magnitude less permeable than host rock. Consequently, deformation bands may have greater practical implications than previously thought, particularly in reservoir rocks with moderate to low host rock permeability.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-038
2016-10-14
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/petgeo/23/1/petgeo2016-038.html?itemId=/content/journals/10.1144/petgeo2016-038&mimeType=html&fmt=ahah

References

  1. Agosta, F., Alessandroni, M., Tondi, E. & Aydin, A.
    2009. Oblique normal faulting along the northern edge of the Majella Anticline, central Italy: Inferences on hydrocarbon migration and accumulation. Journal of Structural Geology, 31, 674–690.
    [Google Scholar]
  2. Antonellini, M. & Aydin, A.
    1994. Effect of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG Bulletin, 78, 355–377.
    [Google Scholar]
  3. Antonellini, M., Aydin, A. & Pollard, D.D.
    1994. Microstructure of deformation bands in porous sandstones at Arches National Park, Utah. Journal of Structural Geology, 16, 941–959.
    [Google Scholar]
  4. Antonellini, M., Tondi, E., Agosta, F., Aydin, A. & Cello, G.
    2008. Failure modes in deep-water carbonates and their impact for fault development: Majella Mountain, Central Apennines, Italy. Marine and Petroleum Geology, 25, 1074–1096.
    [Google Scholar]
  5. Antonellini, M., Cilona, A., Tondi, E., Zambrano, M. & Agosta, F.
    2014a. Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy). Marine and Petroleum Geology, 55, 186–201.
    [Google Scholar]
  6. Antonellini, M., Petracchini, L., Billi, A. & Scrocca, D.
    2014b. First reported occurrence of deformation bands in a platform limestone, the Jurassic Calcare Massiccio Fm., northern Apennines, Italy. Tectonophysics, 628, 85–104.
    [Google Scholar]
  7. Argnani, A.
    1990. Geophysics of the Mediterranean Basin. The Strait of Sicily rift zone: Foreland deformation related to the evolution of a back-arc basin. Journal of Geodynamics, 12, 311–331.
    [Google Scholar]
  8. Aydin, A.
    1978. Small faults formed as deformation bands in sandstone. Pure and Applied Geophysics, 116, 913–930.
    [Google Scholar]
  9. Aydin, A. & Johnson, A.M.
    1983. Analysis of faulting in porous sandstones. Journal of Structural Geology, 5, 19–31.
    [Google Scholar]
  10. Aydin, A., Borja, R.I. & Eichhubl, P.
    2006. Geological and mathematical framework for failure modes in granular rock. Journal of Structural Geology, 28, 83–98.
    [Google Scholar]
  11. Ballas, G., Soliva, R., Sizun, J.-P., Benedicto, A., Cavailhes, T. & Raynaud, S.
    2012. The importance of the degree of cataclasis in shear bands for fluid flow in porous sandstone, Provence, France. AAPG Bulletin, 96, 2167–2186.
    [Google Scholar]
  12. Bastesen, E. & Rotevatn, A.
    2012. Evolution and structural style of relay zones in layered limestone–shale sequences: insights from the Hammam Faraun Fault Block, Suez rift, Egypt. Journal of the Geological Society, London, 169, 477–488, http://doi.org/10.1144/0016-76492011-100
    [Google Scholar]
  13. Baud, P., Vinciguerra, S., David, C., Cavallo, A., Walker, E. & Reuschlé, T.
    2009. Compaction and failure in high porosity carbonates: mechanical data and microstructural observations. In: Vinciguerra, S. & Bernabé, Y. (eds) Rock Physics and Natural Hazards. Birkhäuser, Basel, 869–898.
    [Google Scholar]
  14. Baxevanis, T., Papamichos, E., Flornes, O. & Larsen, I.
    2006. Compaction bands and induced permeability reduction in Tuffeau de Maastricht calcarenite. Acta Geotechnica, 1, 123–135.
    [Google Scholar]
  15. Bense, V.F., Van den Berg, E.H. & Van Balen, R.T.
    2003. Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands. Hydrogeology Journal, 11, 319–332.
    [Google Scholar]
  16. Bonson, C.G., Childs, C., Walsh, J.J., Schöpfer, M.P.J. & Carboni, V.
    2007. Geometric and kinematic controls on the internal structure of a large normal fault in massive limestones: The Maghlaq Fault, Malta. Journal of Structural Geology, 29, 336–354.
    [Google Scholar]
  17. Cavailhes, T., Soliva, R., Benedicto, A., Loggia, D., Schultz, R.A. & Wibberley, C.A.J.
    2009. Are cataclastic shear bands fluid barriers or capillarity conduits? Insight from the analysis of redox fronts in porous sandstones from Provence, France. Paper presented at the European Association of Geoscientists and Engineers 2nd International Conference on Fault and Top Seals, 21–24 September 2009, Montpellier, France.
    [Google Scholar]
  18. Cello, G., Crisci, G.M., Marabini, S. & Tortorici, L.
    1985. Transtensive tectonics in the Strait of Sicily: Structural and volcanological evidence from the Island of Pantelleria. Tectonics, 4, 311–322.
    [Google Scholar]
  19. Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A. & Spiers, C.J.
    2012. Deformation bands in porous carbonate grainstones: Field and laboratory observations. Journal of Structural Geology, 45, 137–157.
    [Google Scholar]
  20. Cilona, A., Faulkner, D.R. et al.
    2014. The effects of rock heterogeneity on compaction localization in porous carbonates. Journal of Structural Geology, 67(), 75–93.
    [Google Scholar]
  21. Dart, C.J., Bosence, D.W.J. & McClay, K.R.
    1993. Stratigraphy and structure of the Maltese graben system. Journal of the Geological Society, London, 150, 1153–1166, http://doi.org/10.1144/gsjgs.150.6.1153
    [Google Scholar]
  22. Davatzes, N.C., Eichhubl, P. & Aydin, A.
    2005. Structural evolution of fault zones in sandstone by multiple deformation mechanisms: Moab fault, southeast Utah. GSA Bulletin, 117, 135–148.
    [Google Scholar]
  23. Deng, S., Zuo, L., Aydin, A., Dvorkin, J. & Mukerji, T.
    2015. Permeability characterization of natural compaction bands using core flooding experiments and three-dimensional image-based analysis: Comparing and contrasting the results from two different methods. AAPG Bulletin, 99, 27–49.
    [Google Scholar]
  24. Ehrenberg, S. & Nadeau, P.
    2005. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity–depth and porosity–permeability relationships. AAPG Bulletin, 89, 435–445.
    [Google Scholar]
  25. Engelder, J.T.
    1974. Cataclasis and the generation of fault gouge. GSA Bulletin, 85, 1515–1522.
    [Google Scholar]
  26. Fachri, M., Rotevatn, A. & Tveranger, J.
    2013. Fluid flow in relay zones revisited: Towards an improved representation of small-scale structural heterogeneities in flow models. Marine and Petroleum Geology, 46, 144–164.
    [Google Scholar]
  27. Fisher, Q.J. & Knipe, R.J.
    2001. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18, 1063–1081.
    [Google Scholar]
  28. Fossen, H. & Bale, A.
    2007. Deformation bands and their influence on fluid flow. AAPG Bulletin, 91, 1685–1700.
    [Google Scholar]
  29. Fossen, H., Johansen, T.E.S., Hesthammer, J. & Rotevatn, A.
    2005. Fault interaction in porous sandstone and implications for reservoir management; examples from Southern Utah. AAPG Bulletin, 89, 1593–1606.
    [Google Scholar]
  30. Fossen, H., Schultz, R.A., Shipton, Z.K. & Mair, K.
    2007. Deformation bands in sandstone – a review. Journal of the Geological Society, London, 164, 755–769, http://doi.org/10.1144/0016-76492006-036
    [Google Scholar]
  31. Fossen, H., Zuluaga, L.F., Ballas, G., Soliva, R. & Rotevatn, A.
    2015. Contractional deformation of porous sandstone: Insights from the Aztec Sandstone, SE Nevada, USA. Journal of Structural Geology, 74, 172–184.
    [Google Scholar]
  32. Friedman, M. & Logan, J.M.
    1973. Lüders’ bands in experimentally deformed sandstone and limestone. GSA Bulletin, 84, 1465–1476.
    [Google Scholar]
  33. Gabrielsen, R. & Koestler, A.G.
    1987. Description and structural implications of fractures in late Jurassic sandstones of the Troll Field, northern North Sea. Norsk Geologisk Tidsskrift, 67, 371–381.
    [Google Scholar]
  34. Gibson, R.G.
    1998. Physical character and fluid-flow properties of sandstone-derived fault zones. In: Coward, M.P., Daltaban, T.S. & Johnson, H. (eds) Structural Geology in Reservoir Characterization. Geological Society, London, Special Publications, 127, 83–97, http://doi.org/10.1144/GSL.SP.1998.127.01.07
    [Google Scholar]
  35. Grasso, M., Reuther, C.D., Baumann, H. & Becker, A.
    1986. Shallow crustal stress and neotectonic framework of the Malta Platform and the Southeastern Pantelleria Rift (Central Mediterranean). Geologica Romana, 25, 191–212.
    [Google Scholar]
  36. Jamison, W.R. & Stearns, D.W.
    1982. Tectonic deformation of Wingate Sandstone, Colorado National Monument. AAPG Bulletin, 66, 2584–2608.
    [Google Scholar]
  37. Ji, Y., Hall, S.A., Baud, P. & Wong, T.-f.
    2015. Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation. Geophysical Journal International, 200, 701–719.
    [Google Scholar]
  38. Johansen, T.E.S., Fossen, H. & Kluge, R.
    2005. The impact of syn-faulting porosity reduction on damage zone architecture in porous sandstone: an outcrop example from the Moab Fault, Utah. Journal of Structural Geology, 27, 1469–1485.
    [Google Scholar]
  39. Klinkenberg, L.J.
    1941. The permeability of porous media to liquid and gases. In: Drilling and Production Practice. AmericanPetroleum Institute, New York, 200–213.
    [Google Scholar]
  40. Leveille, G.P., Knipe, R. et al.
    1997. Compartmentalization of Rotliegendes gas reservoirs by sealing faults, Jupiter Fields area, southern North Sea. In: Ziegler, K., Turner, P. & Daines, S.R. (eds) Petroleum Geology of the Southern North Sea: Future Potential. Geological Society, London, Special Publications, 123, 87–104, http://doi.org/10.1144/GSL.SP.1997.123.01.06
    [Google Scholar]
  41. Lewis, H. & Couples, G.D.
    1993. Production evidence for geological heterogeneities in the Anschutz Ranch East Field, western USA. In: North, C.P. & Prosser, D.J. (eds) Characterization of Fluvial and Aeolian Reservoirs. Geological Society, London, Special Publications, 73, 321–338, http://doi.org/10.1144/GSL.SP.1993.073.01.19
    [Google Scholar]
  42. Lønøy, A.
    2006. Making sense of carbonate pore systems. AAPG Bulletin, 90, 1381–1405.
    [Google Scholar]
  43. Lothe, A.E., Gabrielsen, R.H., Bjørnevoll-Hagen, N. & Larsen, B.T.
    2002. An experimental study of the texture of deformation bands; effects on the porosity and permeability of sandstones. Petroleum Geoscience, 8, 195–207, http://doi.org/10.1144/petgeo.8.3.195
    [Google Scholar]
  44. Mandl, G., DeJong, L.N.J. & Maltha, A.
    1977. Shear zones in granular material. Rock Mechanics, 9, 95–144.
    [Google Scholar]
  45. Manzocchi, T., Ringrose, P.S. & Underhill, J.R.
    1998. Flow through fault systems in high-porosity sandstones. In: Coward, M.P., Daltaban, T.S. & Johnson, H. (eds) Structural Geology in Reservoir Characterization. Geological Society, London, Special Publications, 127, 65–82, http://doi.org/10.1144/GSL.SP.1998.127.01.06
    [Google Scholar]
  46. Manzocchi, T., Heath, A.E., Walsh, J.J. & Childs, C.
    2002. The representation of two phase fault-rock properties in flow simulation models. Petroleum Geoscience, 8, 119–132, http://doi.org/10.1144/petgeo.8.2.119
    [Google Scholar]
  47. Matthäi, S.K., Aydin, A., Pollard, D.D. & Roberts, S.G.
    1998. Numerical simulation of departures from radial drawdown in a faulted sandstone reservoir with joints and deformation bands. In: Jones, G., Fisher, Q.J. & Knipe, R.J. (eds) Faulting, fault sealing and fluid flow in hydrocarbon reservoirs. Geological Society, London, Special Publications, 157–191, http://doi.org/10.1144/GSL.SP.1998.147.01.11
    [Google Scholar]
  48. Olsson, W.A., Lorenz, J.C. & Cooper, S.P.
    2004. A mechanical model for multiply-oriented conjugate deformation bands. Journal of Structural Geology, 26, 325–338.
    [Google Scholar]
  49. Pedley, H.M., House, M.R. & Waugh, B.
    1976. The geology of Malta and Gozo. Proceedings of the Geologists’ Association, 87, 325–341.
    [Google Scholar]
  50. Pedley, H.M.
    1993. Geological Map of the Islands of Malta, 1:25,000 scale. British Geological Survey, Keyworth, UK.
    [Google Scholar]
  51. Rath, A., Exner, U., Tschegg, C., Grasemann, B., Laner, R. & Draganits, E.
    2011. Diagenetic control of deformation mechanisms in deformation bands in a carbonate grainstone. AAPG Bulletin, 95, 1369–1381.
    [Google Scholar]
  52. Rawling, G.C. & Goodwin, L.B.
    2003. Cataclasis and particulate flow in faulted, poorly lithified sediments. Journal of Structural Geology, 25, 317–331.
    [Google Scholar]
  53. Rotevatn, A. & Bastesen, E.
    2014. Fault linkage and damage zone architecture in tight carbonate rocks in the Suez Rift (Egypt): implications for permeability structure along segmented normal faults. In: Spence, G.H., Redfern, J., Aguilera, R., Bevan, T.G., Cosgrove, J.W., Couples, G.D. & Daniel, J.-M. (eds) Advances in the Study of Fractured Reservoirs. Geological Society, London, Special Publications, 374, 79–95, http://doi.org/10.1144/SP374.12
    [Google Scholar]
  54. Rotevatn, A. & Fossen, H.
    2011. Simulating the effect of subseismic fault tails and process zones in a siliciclastic reservoir analogue: Implications for aquifer support and trap definition. Marine and Petroleum Geology, 28, 1648–1662.
    [Google Scholar]
  55. 2012. Soft faults with hard tips: magnitude-order displacement gradient variations controlled by strain softening versus hardening; implications for fault scaling. Journal of the Geological Society, London, 169, 123–126, http://doi.org/10.1144/0016-76492011-108
    [Google Scholar]
  56. Rotevatn, A., Torabi, A., Fossen, H. & Braathen, A.
    2008. Slipped deformation bands: A new type of cataclastic deformation bands in Western Sinai, Suez rift, Egypt. Journal of Structural Geology, 30, 1317–1331.
    [Google Scholar]
  57. Rotevatn, A., Tveranger, J., Howell, J.A. & Fossen, H.
    2009. Dynamic investigation of the effect of a relay ramp on simulated fluid flow: geocellular modelling of the Delicate Arch Ramp, Utah. Petroleum Geoscience, 15, 45–58, http://doi.org/10.1144/1354-079309-779
    [Google Scholar]
  58. Rotevatn, A., Sandve, T.H., Keilegavlen, E., Kolyukhin, D. & Fossen, H.
    2013. Deformation bands and their impact on fluid flow in sandstone reservoirs: the role of natural thickness variations. Geofluids, 13, 359–371.
    [Google Scholar]
  59. Rotevatn, A., Thorsheim, E., Bastesen, E., Fossmark, H.S.S., Torabi, A. & Sælen, G.
    2016. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault: implications for deformation mechanisms in different tectonic regimes. Journal of Structural Geology, 90, 27–47, http://doi.org/10.1016/j.jsg.2016.07.003
    [Google Scholar]
  60. Rustichelli, A., Tondi, E., Agosta, F., Cilona, A. & Giorgioni, M.
    2012. Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano Formation, Majella Mountain, Italy). Journal of Structural Geology, 37, 181–199.
    [Google Scholar]
  61. Saillet, E. & Wibberley, C.A.J.
    2010. Evolution of cataclastic faulting in high-porosity sandstone, Bassin du Sud-Est, Provence, France. Journal of Structural Geology, 32, 1590–1608.
    [Google Scholar]
  62. Shipton, Z.K. & Cowie, P.A.
    2003. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. Journal of Structural Geology, 25, 333–344.
    [Google Scholar]
  63. Sigda, J.M. & Wilson, J.L.
    2003. Are faults preferential flow paths through semiarid and arid vadose zones?Water Resources Research, 39, http://doi.org/10.1029/2002WR001406
    [Google Scholar]
  64. Sternlof, K.R., Chapin, J.R., Pollard, D.D. & Durlofsky, L.J.
    2004. Permeability effects of deformation band arrays in sandstone. AAPG Bulletin, 88, 1315–1329.
    [Google Scholar]
  65. Sternlof, K.R., Karimi-Fard, M., Pollard, D.D. & Durlofsky, L.J.
    2006. Flow and transport effects of compaction bands in sandstone at scales relevant to aquifer and reservoir management. Water Resources Research, 42, W07425.
    [Google Scholar]
  66. Taylor, W.L. & Pollard, D.D.
    2000. Estimation of in-situ permeability of deformation bands in porous sandstone, Valley of Fire, Nevada. Water Resources Research, 36, 2595–2606.
    [Google Scholar]
  67. Tondi, E.
    2007. Nucleation, development and petrophysical properties of faults in carbonate grainstones: Evidence from the San Vito Lo Capo peninsula (Sicily, Italy). Journal of Structural Geology, 29, 614–628.
    [Google Scholar]
  68. Tondi, E., Antonellini, M., Aydin, A., Marchegiani, L. & Cello, G.
    2006. The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy. Journal of Structural Geology, 28, 376–391.
    [Google Scholar]
  69. Tondi, E., Cilona, A., Agosta, F., Aydin, A., Rustichelli, A., Renda, P. & Giunta, G.
    2012. Growth processes, dimensional parameters and scaling relationships of two conjugate sets of compactive shear bands in porous carbonate grainstones, Favignana Island, Italy. Journal of Structural Geology, 37, 53–64.
    [Google Scholar]
  70. Tondi, E., Rustichelli, A. et al.
    2016. Hydraulic properties of fault zones in porous carbonates, examples from central and southern Italy. Italian Journal of Geosciences, 135, 68–79.
    [Google Scholar]
  71. Torabi, A. & Fossen, H.
    2009. Spatial variation of microsturcture and petrophysical properties along deformation bands in reservoir sandstones. AAPG Bulletin, 93, 919–938.
    [Google Scholar]
  72. Torabi, A., Fossen, H. & Alaei, B.
    2008. Application of spatial correlation functions in permeability estimation of deformation bands in porous rocks. Journal of Geophysical Research, 113, http://doi.org/10.1029/2007JB005455
    [Google Scholar]
  73. Torabi, A., Fossen, H. & Braathen, A.
    2013. Insight into petrophysical properties of deformed sandstone reservoirs. AAPG Bulletin, 97, 619–637.
    [Google Scholar]
  74. Vajdova, V., Zhu, W., Natalie Chen, T.-M. & Wong, T.-f.
    2010. Micromechanics of brittle faulting and cataclastic flow in Tavel limestone. Journal of Structural Geology, 32, 1158–1169.
    [Google Scholar]
  75. Walsh, J.J., Watterson, J., Heath, A.E. & Childs, C.
    1998. Representation and scaling of faults in fluid flow models. Petroleum Geoscience, 4, 241–251, http://doi.org/10.1144/petgeo.4.3.241
    [Google Scholar]
  76. Zhu, W., Baud, P. & Wong, T.-f.
    2010. Micromechanics of cataclastic pore collapse in limestone. Journal of Geophysical Research: Solid Earth, 115, B04405, http://doi.org/04410.01029/02009JB006610
    [Google Scholar]
  77. Zuluaga, L.F., Rotevatn, A., Keilegavlen, E. & Fossen, H.
    2016. The impact of deformation bands on simulated fluid flow within fault-propagation fold trap types: lessons from the San Rafael Monocline, Utah (USA). AAPG Bulletin, 100, http://doi.org/10.1306/04151614153
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-038
Loading
/content/journals/10.1144/petgeo2016-038
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error