1887
Volume 29, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Otway Basin in the south of Victoria, Australia underwent three phases of deformation during breakup of the southern Australian margin. We assess the geometry and kinematics of faulting in the basin by analysing a 3‐D reflection seismic volume. Eight stratigraphic horizons and 24 SW‐dipping normal faults as well as subordinate antithetic faults were interpreted. This resulted in a high‐resolution geological 3‐D model (. 8 km × 7 km × 4 km depth) that we present as a supplementary 3‐D PDF (Data S1). We identified hard‐ and soft‐linking fault connections over the entire area, such as antithetic faults and relay ramps, respectively. Most major faults were continuously active from Early to Late Cretaceous, with two faults in the northern part of the study area active until at least the Oligocene. Allan maps of faults show tectonic activity continuously waned over this time period. Isopach maps of stratigraphic volumes quantify the amount of syn‐sedimentary movement that is characteristic of passive margins, such as the Otway Basin. We show that the faults possess strong corrugations (with amplitudes above the seismic resolution), which we illustrated by novel techniques, such as cylindricity and curvature. We argue that the corrugations are produced by sutures between sub‐vertical fault segments and this morphology was maintained during fault growth. Thus, they can be used to indicate the kinematics vector of the fault movement. This evidences, together with left‐stepping relay ramps, that 40% of the faults had a small component (up to 25°) of dextral oblique slip as well as normal (dip‐slip) movement.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12146
2015-08-07
2024-04-20
Loading full text...

Full text loading...

References

  1. Allan, U.S. (1989) Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bull, 73, 803–811.
    [Google Scholar]
  2. Alley, N.F. & Lindsay, J.M. (1995) Tertiary. In: The geology of South Australia, Vol. 2. (Ed. by J.F.Drexel & W.V.Preiss ), Geological Survey of South Australia, Geological Survey. Bulletin, 54, 150–217.
    [Google Scholar]
  3. Aruffo, C.M., Rodriguez‐Herrera, A., Tenthorey, E., Krzikalla, F., Minton, J. & Henk, A. (2014) Geomechanical modelling to assess fault integrity at the CO2CRC Otway Project, Australia. Austr. J. Earth Sci., 61, 987–1000.
    [Google Scholar]
  4. Awdal, A., Healy, D. & Alsop, I.G. (2014) Geometrical analysis of deformation band lozenges and their scaling relationships to fault lenses. J. Struct. Geol., 66, 11–23.
    [Google Scholar]
  5. Bérard, T., Sinha, B.K., van Ruth, P., Dance, T., John, Z. & Tan, C. (2008) Stress estimation at the Otway CO2 Storage Site, Australia. SPE Asia Pacific Oil and Gas Conference and Exhibition, 26, 135–148.
  6. Blevin, J.E. & Cathro, D.L. (2008) Australian Southern Margin Thesis ‐ Project GA707, Client report to Geoscience Australia by FrOG Tech Pty Ltd. GeoCat 68892. Technical report.
  7. Brandes, C. & Tanner, D.C. (2012) Three‐dimensional geometry and fabric of shear deformation‐bands in unconsolidated Pleistocene sediments. Tectonophysics, 518–521, 84–92.
    [Google Scholar]
  8. Bryan, S.E., Constantine, A.E., Stephens, C.J., Ewart, A., Schoen, R.W. & Parianos, J. (1997) Early Cretaceous volcano‐sedimentary successions along the eastern Australian continental margin: implications for the break‐up of eastern Gondwana. Earth Planet. Sci. Lett., 153, 85–102.
    [Google Scholar]
  9. Cartwright, J.A., Trudgill, B.D. & Mansfield, C.S. (1995) Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. J. Struct. Geol., 17(9), 1319–1326.
    [Google Scholar]
  10. CGG Australia Pty. Ltd.
    CGG Australia Pty. Ltd. (2000) Final Report Seismic Data Processing OCV00 Curdie Vale 3D. Technical report, CGG Australia Pty. Ltd., PO Box 371, West Perth, WA 6872.
  11. Childs, C., Nicol, A., Walsh, J.J. & Watterson, J. (1996) Growth of vertically segmented normal faults. J. Struct. Geol., 18(12), 1389–1397.
    [Google Scholar]
  12. Contreras, J., Anders, M.H. & Scholz, C.H. (2000) Growth of a normal fault system: observations from the Lake Malawi basin of the east African rift. J. Struct. Geol., 22, 159–168.
    [Google Scholar]
  13. Cook, P.J.
    (ed.) (2014) Geologically Storing Carbon: Learning from the Otway Project Experience. CSIRO Publishing, Melbourne. pp. 384.
    [Google Scholar]
  14. Cooper, G.T. & Hill, K.C. (1997) Cross‐section balancing and thermochronological analysis of the Mesozoic development of the eastern Otway Basin. APPEA J., 153, 390–414.
    [Google Scholar]
  15. Dance, T. (2013) Assessment and geological characterisation of the CO2CRC Otway Project CO2 storage demonstration site: from prefeasibility to injection. Mar. Pet. Geol., 46, 251–269.
    [Google Scholar]
  16. Dawers, N.H. & Underhill, J.R. (2000) The role of fault interaction and linkage in controlling syn‐rift stratigraphic sequences: late Jurassic, Statfjord East area, northern North Sea. Bull. Am. Ass. Petrol. Geol., 84, 45–64.
    [Google Scholar]
  17. Douglas, J.G. & Ferguson, J.A. (1988) Geological map of Victoria.
  18. Finlayson, D.M., Johnstone, D.W., Owen, A.J. & Wake‐Dyster, K.D. (1996) Deep seismic images and the tectonic framework of early rifting in the Otway Basin, Australian southern margin. Tectonophysics, 264(1–4), 137–152.
    [Google Scholar]
  19. Finlayson, D.M., Collins, C.D.N., Lukaszyk, I. & Chudyk, E.C. (1998) A transect across Australia's southern margin in the Otway Basin region: crustal architecture and the nature of rifting from wide‐angle seismic profiling. Tectonophysics, 288(1–4), 177–189.
    [Google Scholar]
  20. Fossen, H. & Hesthammer, J. (1997) Geometric analysis and scaling relations of deformation bands in porous sandstone. J. Struct. Geol., 19, 1479–1493.
    [Google Scholar]
  21. van Gent, H.W., Back, S., Urai, J.L., Kukla, P.A. & Reicherter, K. (2009) Paleostresses of the Groningen area, the Netherlands‐ results of a seismic based structural reconstruction. Tectonophysics, 470, 147–161.
    [Google Scholar]
  22. Gurevich, B., Pevzner, R., Urosevic, M., Kepic, A., Shulakova, A. & Caspari, E. (2014) 2D and 3D seismic investigations for Stages 1 and 2C. In: Geologically Storing Carbon: learning from the Otway Project Experience (Ed. by P.J.Cook ), pp. 155–195. CSIRO Publishing, Melbourne.
    [Google Scholar]
  23. Hancock, P.L. & Barka, A.A. (1987) Kinematic indicators on active normal faults in western Turkey. J. Struct. Geol., 9, 573–584.
    [Google Scholar]
  24. Hillis, R.R. & Reynolds, S. (2000) The Australian stress map. J. Geol. Soc. London, 157, 915–921.
    [Google Scholar]
  25. Imber, J., Tuckwell, G.W., Childs, C., Walsh, J.J., Manzocchi, T., Heath, A.E., Bonson, C.G. & Strand, J. (2004) Three dimensional distinct element modelling of relay growth and breaching along normal faults. J. Struct. Geol., 26, 1897–1911.
    [Google Scholar]
  26. Jenkins, C.R., Cook, P.J., Ennis‐King, J., Undershultz, J., Boreham, C., Dance, T., de Caritat, P., Etheridge, D.M., Freifeld, B.M., Hortle, A., Kirste, D., Paterson, L., Pevzner, R., Schacht, U., Sharma, S., Stalker, L. & Urosevic, M. (2011) Safe storage and effective monitoring of CO2 in depleted gas fields. Proc. Natl Acad. Sci., 109(2), E35–E41.
    [Google Scholar]
  27. Jones, R.M., Boult, P.J., Hillis, R.R. & Mildren, S. (2000) Integrated hydro‐carbon seal evaluation in the Penola Trough, Otway Basin. APPEA J., 40, 194–212.
    [Google Scholar]
  28. Kley, J., Rossello, E.A., Monaldi, C.R. & Habighorst, B. (2005) Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina. Tectonophysics, 399, 155–172.
    [Google Scholar]
  29. Kopsen, E. & Scholefield, T. (1990) Prospectivity of the Otway Supergroup in the central and western Otway Basin. APPEA J., 30, 263–279.
    [Google Scholar]
  30. Krassay, A.A., Cathro, D.L. & Ryan, D.J. (2004) A regional tectonostratigraphic framework for the Otway Basin. Petroleum Exploration Society of Australia, Special Publication. pp. 97–116.
  31. Krawczyk, C.M., Henk, A., Tanner, D.C., Trappe, H., Ziesch, J., Beilecke, T., Aruffo, C.M., Weber, B., Lippmann, A., Goerke, U.‐J., Bilke, L. & Kolditz, O. (2015) Seismic and sub‐seismic deformation prediction in the context of geological carbon trapping and storage. ‐ In: Advanced Technologies in Earth Sciences, Springer, Switzerland, ISBN 978‐3‐319‐13929‐6, pp. 97–113, doi: 10.1007/978‐3‐319‐13930‐2_5.
    [Google Scholar]
  32. Lavin, C.J. (1998) Geology and prospectivity of the western Victorian Voluta Trough, Otway Basin, for the 1998 Acreage Release.
  33. Lindsay, N.G., Murphy, F.C., Walsh, J.J. & Watterson, J. (1993) Outcrop studies of shale smear on fault surfaces: international Association of Sedimentologists Special Publication. 15, 113–123.
  34. Lippmann, A., Endres, H., Gierse, G., Pruessmann, J., Schlueter, P., Eisenberg‐Klein, G., Zehnder, M. & Trappe, H. & Protect Research Group (2013) Fracture and fault mapping by curvature and coherency analysis. Poster, CO2CRC Research Symposium, Hobart/Tasmania, 19.
  35. Lohr, T., Krawczyk, C.M., Oncken, O. & Tanner, D.C. (2008) Evolution of a fault surface from 3D attribute analysis and displacement measurements. J. Struct. Geol., 30(6), 690–700.
    [Google Scholar]
  36. Long, J.J. & Imber, J. (2012) Strain compatibility and fault linkage in relay zones on normal faults. J. Struct. Geol., 36, 16–26.
    [Google Scholar]
  37. Mallet, J.‐L. (1992) Discrete smooth interpolation in geometric modelling. Comput. Aided Des., 24(4), 178–191.
    [Google Scholar]
  38. Mallet, J.‐L. (2002) Geomodeling. Applied Geostatistics Series, Oxford University Press, New York, USA.
    [Google Scholar]
  39. Mansfield, C.S. & Cartwright, J.A. (2001) Fault growth by linkage: observations and implications from analogue models. J. Struct. Geol., 23(5), 745–763.
    [Google Scholar]
  40. McLeod, A.E.N., Dawers, H. & Underhill, J.R. (2000) The propagation and linkage of normal faults: insights from the Strathspey‐Brent‐Statfjord fault array, northern North Sea. Basin Res., 12, 263–284.
    [Google Scholar]
  41. Midland Valley Exploration Ltd
    Midland Valley Exploration Ltd . (2013) Move 2013.1 Software Suite, Glasgow, U.K.
  42. Miller, J., Norvick, M.S. & Wilson, C.J.L. (2002) Basement controls on rifting and the associated formation of ocean transform faults — Cretaceous continental extension of the southern margin of Australia. Tectonophysics, 359(1–2), 131–155.
    [Google Scholar]
  43. Moore, A.M.G., Stagg, H.M.J. & Norvick, M.S. (2000) Deep water Otway Basin: a new assessment of the tectonics and hydrocarbon prospectivity. APPEA Journal, 32, 313–324.
    [Google Scholar]
  44. Morley, C.K. (2002) A tectonic model for the Tertiary evolution of strike‐slip faults and rift basins in SE Asia. Tectonophysics, 347, 189–215.
    [Google Scholar]
  45. Needham, D.T., Yielding, G. & Fox, R.J. (1996a) Fault population description and prediction using examples from the offshore U.K. J. Struct. Geol., 18, 155–167.
    [Google Scholar]
  46. Needham, T., Yielding, G. & Freeman, B. (1996b) Analysis of fault geometry and displacement patterns. In: Modern Developments in Structural Interpretation, Validation and Modelling, (Ed. by P.G.Buchanan & D.A.Nieuwland ) Geological Society Special Publication, 99, 189–199.
    [Google Scholar]
  47. Nicol, A., Walsh, J., Berryman, K. & Nodder, S. (2005) Growth of a normal fault by the accumulation of slip over millions of years. J. Struct. Geol., 27, 327–342.
    [Google Scholar]
  48. Nixon, C.W., Sanderson, D.J., Dee, S.J., Bull, J.M., Humphreys, R.J. & Swanson, M.H. (2014) Fault interactions and reactivation within a normal‐fault network at Milne Point, Alaska. AAPG Bulletin, 98(10), 2081–2107.
    [Google Scholar]
  49. Norvick, M. & Smith, M.A. (2001) Mapping the plate tectonic reconstructions of southern and southeastern Australia and implications for petroleum system. APPEA J., 41, 15–35.
    [Google Scholar]
  50. Paradigm LTD.
    Paradigm LTD. (2009) GOCAD 2009.3 Software Suite, Nancy, France.
  51. Peacock, D.C.P. (1991) Displacements and segment linkage in strike‐slip fault zones. J. Struct. Geol., 13(9), 1025–1035.
    [Google Scholar]
  52. Peacock, D.C.P. & Sanderson, D.J. (1994) Geometry and development of relay ramps in normal fault systems. AAPG Bulletin, 78(2), 147–165.
    [Google Scholar]
  53. Perincek, D. & Cockshell, C.D. (1995) The Otway Basin: early Cretaceous rifting to Neogene inversion. Aust. Pet. Expl. Assoc. J., 35, 451–466.
    [Google Scholar]
  54. Pevzner, R., Urosevic, M., Caspari, E., Galvin, R.J., Madadi, M., Dance, T., Shulakova, V., Gurevich, B., Tchverda, V. & Yildiray, C. (2013) Feasibility of time‐lapse seismic methodology for monitoring the injection of small quantities of CO2 into a saline formation, CO2CRC Otway Project. Energy Procedia, 37, 4336–4343.
    [Google Scholar]
  55. Resor, P.G. & Meer, V.E. (2009) Slip heterogeneity on a corrugated fault. Earth Planet. Sci. Lett., 288(3–4), 483–491.
    [Google Scholar]
  56. Taylor, B. & Hayes, D.E. (1980) The tectonic evolution of the South China Sea Basin. In: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Geophysical Monograph Series, vol. 23 (Ed. by DEHayes ), pp. 89–104. American Geophysical Union, Washington, D.C.
    [Google Scholar]
  57. Sharm, A.S., Cook, P.J., Jenkins, C., Steeper, T., Lees, M. & Ranasinghe, N. (2011) The CO2CRC Otway Project: leveraging experience and exploiting new opportunities at Australia's first CCS project site. 10th International Conference on Greenhouse Gas Control Technologies. Energy Procedia, 40, 5447–5454.
    [Google Scholar]
  58. Tupper, N.P., Padley, D., Lovibond, R., Duckett, A.K. & McKirdy, D.M. (1993) A key test of Otway Basin Potential: the Eumeralla‐sourced play on the Charma Terrace. APPEA J., 33(1), 77–93.
    [Google Scholar]
  59. Tvedt, A.B.M., Rotevatn, A., Jackson, C.A.‐L., Fossen, H. & Gawthorpe, R.L. (2013) Growth of normal faults in multilayer sequences: a 3D seismic case study from the Egersund Basin, Norwegian North Sea. J. Struct. Geol., 55, 1–20.
    [Google Scholar]
  60. Urosevic, M., Pevzner, R., Shulakova, V., Kepic, A., Caspari, E. & Sharma, S. (2011) Seismic monitoring of CO2 injection into a depleted gas reservoir‐Otway Basin Pilot Project, Australia. Energy Procedia, 40, 3550–3557.
    [Google Scholar]
  61. Van Ruth, P., Tenthorey, E. & Vidal‐Gilbert, S. (2007) Geochmechnical Analysis of the Naylor Structure, Otway Basin, Australia. Technical report.
  62. Vidal‐Gilbert, S., Tenthorey, E., Dewhurst, D., Ennis‐King, J., van Ruth, P. & Hillis, R. (2010) Geomechanical analysis of the Naylor Field, Otway Basin, Australia: implications for CO2 injection and storage. Int. J. Greenhouse Gas Control, 4(5), 827–839.
    [Google Scholar]
  63. Walsh, J.J. & Watterson, J. (1989) Displacement gradients on fault surfaces. J. Struct. Geol., 11(3), 307–316.
    [Google Scholar]
  64. Walsh, J.J., Watterson, J., Bailey, W.R. & Childs, C. (1999) Fault relays, bends and branch‐lines. J. Struct. Geol., 21, 1019–1026.
    [Google Scholar]
  65. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. & Bonson, C.G. (2003) Formation of segmented normal faults: a 3‐D perspective. J. Struct. Geol., 25(8), 1251–1262.
    [Google Scholar]
  66. White, N.J., Jackson, J.A. & Mckenzie, D.P. (1986) The relationship between geometry of normal faults and that of the sedimentary layers in their hanging walls. J. Struct. Geol., 8(8), 897–909.
    [Google Scholar]
  67. Williamson, P.E., Swift, M.G., O'Brien, G.W. & Falvey, D.A. (1990) Two‐stage Early Cretaceous rifting of the Otway Basin margin of southeastern Australia: implications for rifting of the Australian southern margin. Geology, 18(1), 75–78.
    [Google Scholar]
  68. von Winterfeld, C. & Oncken, O. (1995) Non‐plane strain in section balancing: calculation of restoration parameters. J. Struct. Geol., 17(3), 447–450.
    [Google Scholar]
  69. Woodward, N.B., Gray, D.R. & Spear, D.B. (1986) Including strain data in balanced cross‐sections. J. Struct. Geol., 8(3–4), 313–324.
    [Google Scholar]
  70. Yielding, G., Freeman, B. & Needham, D.T. (1997) Quantitative fault seal prediction. AAPG Bulletin, 81(6), 897–917.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12146
Loading
/content/journals/10.1111/bre.12146
Loading

Data & Media loading...

Supplements

Data S1. 3‐D PDF of the 3‐D model, including all interpreted stratigraphic horizons and faults. The viewer can also create custom 2‐D sections along X, Y or Z axes through the 3‐D model.

PDF

 

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error