1887
Volume 29, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Po River Basin, where accumulation and preservation of thick sedimentary packages are enhanced by high rates of tectonic subsidence, represents an ideal site to assess the relations between vertical changes in stratigraphic architecture and sediment accumulation rates. Based on a large stratigraphic database, a markedly contrasting stratigraphy of Late Pleistocene and Holocene deposits is reconstructed from the subsurface of the modern alluvial and coastal plains. Laterally extensive fluvial channel bodies and related pedogenically modified muds of latest Pleistocene age are unconformably overlain by Holocene overbank fines, grading seaward into paralic and nearshore facies associations. In the interfluvial areas, a stiff paleosol, dating at about 12.5–10 cal ky BP, marks the Pleistocene–Holocene boundary. Across this paleosol, aggradation rates (ARs) from 16 radiocarbon‐dated cores invariably show a sharp increase, from 0.1–0.9 mm year−1 to 0.9–2.9 mm year−1. Comparatively lower Pleistocene values are inferred to reflect fluvial activity under a low‐accommodation (lowstand and early transgressive) regime, whereas higher ARs during the Holocene are related to increasing accommodation under late transgressive and highstand conditions. Holocene sediment accumulation patterns vary significantly from site to site, and do not exhibit common trends. Very high accumulation rates (20–60 mm year−1) are indicated by fluvial channel or progradational delta facies, suggesting that extremely variable spatial distribution of Holocene ARs was primarily controlled by autogenic processes, such as fluvial channel avulsion or delta lobe switching. Contrasting AR between uppermost Pleistocene and Holocene deposits also are reported from the interfluves of several coeval, alluvial‐coastal plain systems worldwide, suggesting a key control by allogenic processes. Sediment accumulation curves from adjacent incised valley fills show, instead, variable shapes as a function of the complex mechanisms of valley formation and filling.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12174
2016-01-07
2024-04-23
Loading full text...

Full text loading...

References

  1. Aguzzi, M., Amorosi, A., Colalongo, M.L., Ricci Lucchi, M., Rossi, V., Sarti, G. & Vaiani, S.C. (2007) Late Quaternary climatic evolution of the Arno coastal plain (Western Tuscany, Italy) from subsurface data. Sediment. Geol., 211, 211–229.
    [Google Scholar]
  2. Allen, G.P. & Posamentier, H.W. (1993) Sequence stratigraphy and facies model of an incised valley fill: the Gironde Estuary, France. J. Sediment. Petrolol., 63, 378–391.
    [Google Scholar]
  3. Amorosi, A. & Marchi, N. (1999) High‐resolution sequence stratigraphy from piezocone tests: an example from the Late Quaternary deposits of the SE Po Plain. Sediment. Geol., 128, 69–83.
    [Google Scholar]
  4. Amorosi, A., Colalongo, M.L., Fusco, F., Pasini, G. & Fiorini, F. (1999a) Glacio‐eustatic control of continental‐shallow marine cyclicity from Late Quaternary deposits of the south‐eastern Po Plain (Northern Italy). Quatern. Res., 52, 1–13.
    [Google Scholar]
  5. Amorosi, A., Colalongo, M.L., Pasini, G. & Preti, D. (1999b) Sedimentary response to Late Quaternary sea‐level changes in the Romagna coastal plain (northern Italy). Sedimentology, 46, 99–121.
    [Google Scholar]
  6. Amorosi, A., Centineo, M.C., Colalongo, M.L., Pasini, G., Sarti, G. & Vaiani, S.C. (2003) Facies architecture and Latest Pleistocene‐Holocene depositional history of the Po Delta (Comacchio area), Italy. J. Geol., 111, 39–56.
    [Google Scholar]
  7. Amorosi, A., Colalongo, M.L., Fiorini, F., Fusco, F., Pasini, G., Vaiani, S.C. & Sarti, G. (2004) Palaeogeographic and palaeoclimatic evolution of the Po Plain from 150‐ky core records. Glob. Planet. Change, 40, 55–78.
    [Google Scholar]
  8. Amorosi, A., Centineo, M.C., Colalongo, M.L. & Fiorini, F. (2005) Millennial‐scale depositional cycles from the Holocene of the Po Plain, Italy. Mar. Geol., 222–223, 7–18.
    [Google Scholar]
  9. Amorosi, A., Dinelli, E., Rossi, V., Vaiani, S.C. & Sacchetto, M. (2008a) Late Quaternary palaeoenvironmental evolution of the Adriatic coastal plain and the onset of Po River Delta. Palaeogeogr. Palaeoclimatol. Palaeoecol., 268, 80–90.
    [Google Scholar]
  10. Amorosi, A., Pavesi, M., Ricci Lucchi, M., Sarti, G. & Piccin, A. (2008b) Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po Plain, Italy. Sediment. Geol., 209, 58–68.
    [Google Scholar]
  11. Amorosi, A., Fontana, A., Antonioli, F., Primon, S. & Bondesan, A. (2008c) Post‐LGM sedimentation and Holocene shoreline evolution in the NW Adriatic coastal area. GeoActa, 7, 41–67.
    [Google Scholar]
  12. Amorosi, A., Pacifico, A., Rossi, V. & Ruberti, D. (2012) Late Quaternary incision and deposition in an active volcanic setting: the Volturno valley fill, southern Italy. Sediment. Geol., 282, 307–320.
    [Google Scholar]
  13. Amorosi, A., Rossi, V., Sarti, G. & Mattei, R. (2013) Coalescent valley fills from the late Quaternary record of Tuscany (Italy). Quat. Int., 288, 129–138.
    [Google Scholar]
  14. Amorosi, A., Bruno, L., Rossi, V., Severi, P. & Hajdas, I. (2014) Paleosol architecture of a late Quaternary basin–margin sequence and its implications for high‐resolution, non‐marine sequence stratigraphy. Global Planet. Change, 112, 12–25.
    [Google Scholar]
  15. Amorosi, A., Bruno, L., Campo, B. & Morelli, A. (2015) The value of pocket penetration tests for the high‐resolution palaeosol stratigraphy of late Quaternary deposits. Geol. J., 50, 670–682.
    [Google Scholar]
  16. Amos, C.L. & Knoll, R.G. (1987) The Quaternary sediments of Banquereau, Scotian Shelf. Geol. Soc. Am. Bull., 99, 244–260.
    [Google Scholar]
  17. Anzidei, M., Maramai, A. & Montone, P. (2012) The Emilia (northern Italy) seismic sequence of May–June, 2012: preliminary data and results. Ann. Geophys., 55, 515–842.
    [Google Scholar]
  18. Aslan, A., Autin, W.J. & Blum, M.D. (2005) Late Holocene avulsion history of the Lower Mississippi River, South Louisiana. J. Sediment. Res., 75, 648–662.
    [Google Scholar]
  19. Autin, W.J., Burns, S.F., Miller, B.J., Saucier, R.T. & Snead, J.I. (1991) Quaternary geology of the Lower Mississippi Valley. In: Quaternary Non Glacial Geology: Conterminous U.S. (Ed. by MorrisonR.B. ) Geological Society of America, The Geology of North America, K‐2, 547–582.
    [Google Scholar]
  20. Baker, D., Peterson, C., Hemphill‐Haley, E. & Twichell, D. (2010) Latest Pleistocene and Holocene (2‐16 ka) sedimentation in the Columbia River, Estuary, Oregon, USA. Mar. Geol., 273, 83–95.
    [Google Scholar]
  21. Blum, M.D. & Aslan, A. (2006) Signatures of climate vs. sea‐level change within incised valley‐fill successions: quaternary examples from the Texas Gulf Coast. Sediment. Geol., 190, 177–211.
    [Google Scholar]
  22. Blum, M.D. & Törnqvist, T.E. (2000) Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology, 47, 2–48.
    [Google Scholar]
  23. Blum, M.D. & Valastro, S.Jr (1994) Late Quaternary sedimentation, lower Colorado River, Gulf Coastal plain of Texas. Geol. Soc. Am. Bull., 106, 1002–1016.
    [Google Scholar]
  24. Blum, M.D., Toomey, R.S.Iii & Valastro, S. (1994) Fluvial response to Late Quaternary climatic and environmental change, Edwards Plateau, Texas. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 1–21.
    [Google Scholar]
  25. Blum, M.D., Martin, J., Milliken, K. & Garvin, M. (2013) Paleovalley systems: insights from Quaternary analogs and experiments. Earth Sci. Rev., 116, 128–169.
    [Google Scholar]
  26. Boccaletti, M., Corti, G. & Martelli, L. (2011) Recent and active tectonics of the external zone of the Northern Apennines (Italy) . Int. J. Earth Sci., 100, 1331–1348.
    [Google Scholar]
  27. Bondesan, M., Favero, V. & Viñals, M.J. (1995) New evidence on the evolution of the Po delta coastal plain during the Holocene. Quat. Int., 29–30, 105–110.
    [Google Scholar]
  28. Boyd, R., Diessel, C.F.K., Wadsworth, J., Leckie, D. & Zaitlin, B.A. (2000) Organization of non marine stratigraphy. In: Advances in the Study of the Sydney Basin, Proceedings of the 34th Newcastle Symposium (Ed. by R.Boyd , C.F.K.Diessel & S.Francis ), pp. 1–14. University of Newcastle, Callaghan, NSW, Australia.
    [Google Scholar]
  29. Bronk Ramsey, C. (2009) Dealing with outliers and offsets in radiocarbon dating. Radiocarbon, 51, 1023–1045.
    [Google Scholar]
  30. Bruno, L., Amorosi, A., Curina, R., Severi, P. & Bitelli, R. (2013) Human–landscape interactions in the Bologna area (northern Italy) during the mid–late Holocene, with focus on the Roman period. Holocene, 23, 1560–1571.
    [Google Scholar]
  31. Bruno, L., Amorosi, A., Severi, P. & Bartolomei, P. (2015) High‐frequency depositional cycles within the late Quaternary alluvial succession of Reno River (northern Italy). Ital. J. Geosci., 134, 339–354.
    [Google Scholar]
  32. Burrato, P., Ciucci, F. & Valensise, G. (2003) An inventory of river anomalies in the Po Plain, Northern Italy: evidence for active blind thrust faulting. Ann. Geophys., 44, 865–882.
    [Google Scholar]
  33. Busschers, F.S., Weerts, H.J.T., Wallinga, J., Kasse, C., Cleveringa, P., De Wolf, H. & Cohen, K.M. (2005) Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine‐Meuse deposits‐fluvial response to climate change, sea‐level fluctuation and glaciation. Neth. J. Geosci., 84, 25–41.
    [Google Scholar]
  34. Busschers, F.S., Kasse, C., Van Balen, R.T., Vandenberghe, J., Cohen, K.M., Weerts, H.J.T., Wallinga, J., Johns, C., Cleveringa, P. & Bunnik, F.P.M. (2007) Late Pleistocene evolution of the Rhine‐Meuse system in the southern North Sea basin: imprints of climate change, sea‐level oscillation, and glacio‐isostacy. Quat. Sci. Rev., 26, 3216–3248.
    [Google Scholar]
  35. Carannante, S., Argnani, A., Massa, M., D'alema, E., Lovati, S., Moretti, M., Cattaneo, M. & Augliera, P. (2015) The May 20 (MW 6.1) and 29 (MW 6.0), 2012, Emilia (Po Plain, northern Italy) earthquakes: new seismotectonic implications from subsurface geology and high‐quality hypocenter location. Tectonophysics, 655, 107–123.
    [Google Scholar]
  36. Carminati, E. & Di Donato, G. (1999) Separating natural and anthropogenic vertical movements in fast subsiding areas: the Po Plain (N. Italy) case. Geophys. Res. Lett., 26, 2291–2294.
    [Google Scholar]
  37. Carminati, E. & Martinelli, G. (2002) Subsidence rates in the Po Plain, northern Italy: the relative impact of natural and anthropogenic causation. Eng. Geol., 66, 241–255.
    [Google Scholar]
  38. Carvalho, F. & Schulte, L. (2013) Morphological control on sedimentation rates and patterns of delta floodplains in the Swiss Alps. Geomorphology, 198, 163–176.
    [Google Scholar]
  39. Chen, Y., Liu, J.C.L., Shieh, Y. & Liu, T. (2004) Late Pleistocene to Holocene environmental changes as recorded in the sulfur geochemistry of coastal plain sediments, southwestern Taiwan. J. Asian Earth Sci., 24, 213–224.
    [Google Scholar]
  40. Choi, K. & Kim, S. (2006) Late Quaternary evolution of macrotidal Kimpo tidal flat, Kyonggi Bay, west coast of Korea. Mar. Geol., 232, 17–34.
    [Google Scholar]
  41. Colombera, L., Mountney, N.P. & McCaffrey, W.D. (2015) A meta‐study of relationships between fluvial channel‐body stacking pattern and aggradation rate: implications for sequence stratigraphy. Geology, 43/4, 283–286.
    [Google Scholar]
  42. Correggiari, A., Field, M. & Trincardi, F. (1996) Late Quaternary transgressive large dunes on the sediment‐starved Adriatic shelf. In: Geology of Siliciclastic Shelf Seas (Ed. by De BatistM. & JacobsP. ) Geological Society of London Special Publications, 117, 155–169.
    [Google Scholar]
  43. Correggiari, A., Cattaneo, A. & Trincardi, F. (2005) Depositional patterns in the Late‐Holocene Po delta system. In: Concepts, Models and Examples (Ed. by BhattacharyaJ.P. & GiosanL. ) SEPM Special Publication, 83, 365–392.
    [Google Scholar]
  44. Currie, B.S. (1997) Sequence stratigraphy of non marine Jurassic‐Cretaceous rocks, central Cordilleran foreland‐basin system. Geol. Soc. Am. Bull., 109, 1206–1222.
    [Google Scholar]
  45. Dinelli, E., Ghosh, A., Rossi, V. & Vaiani, S.C. (2013) Multiproxy reconstruction of Late Pleistocene‐Holocene environmental changes in coastal successions: microfossil and geochemical evidences from the Po Plain (Northern Italy). Stratigraphy, 9, 153–167.
    [Google Scholar]
  46. Donnici, S., Serandrei‐Barbero, R. & Canali, G. (2012) Evidence of climatic changes in the Venetian Coastal Plain (Northern Italy) during the last 40,000 years. Sediment. Geol., 281, 139–150.
    [Google Scholar]
  47. Dung, B.V., Stattegger, K., Thanh, N.T., Van Phach, P., Dung, T.T. & Thong, B.X. (2014) Late Pleistocene–Holocene seismic stratigraphy of Nha Trang shelf, central Vietnam. Mar. Pet. Geol., 58, 789–800.
    [Google Scholar]
  48. Fontana, A., Mozzi, P. & Bondesan, A. (2008) Alluvial megafans in the Venetian‐Friulian plain (north‐eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. Quat. Int., 189, 71–90.
    [Google Scholar]
  49. Fontana, A., Mozzi, P. & Marchetti, M. (2014) Alluvial fans and megafans along the southern side of the Alps. Sediment. Geol., 301, 150–171.
    [Google Scholar]
  50. Foyle, A.M. & Oertel, G.F. (1997) Transgressive systems tract development and incised valley fills within a Quaternary estuary‐shelf system: Virginia inner shelf, USA. Mar. Geol., 137, 227–249.
    [Google Scholar]
  51. Galli, P., Castenetto, S. & Peronace, E. (2012) May 2012 Emilia earthquakes (Mw 6, Northern Italy): macroseismic effects distribution and seismotectonic implications. Alpine Mediterr. Quat., 2, 105–123.
    [Google Scholar]
  52. Green, A.N. (2009) Palaeo‐drainage, incised valley fills and transgressive systems tract sedimentation of the northern KwaZulu‐Natal continental shelf, South Africa, SW Indian Ocean. Mar. Geol., 263, 46–63.
    [Google Scholar]
  53. Hajek, E.A., Heller, P.L. & Sheets, B.A. (2010) Significance of channel‐belt clustering in alluvial basins. Geology, 38, 535–538.
    [Google Scholar]
  54. Hori, K., Saito, Y., Zhao, Q. & Wang, P. (2002) Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to late Pleistocene‐Holocene sea‐level changes. J. Sediment. Res., 72, 884–897.
    [Google Scholar]
  55. Labourdette, R. & Jones, R.R. (2007) Characterization of fluvial architectural elements using a three‐dimensional outcrop data set: Escanilla braided system, South‐Central Pyrenees, Spain. Geosphere, 3, 422–434.
    [Google Scholar]
  56. Lamoreaux, H.K., Brook, G.A. & Knox, J.A. (2009) Late Pleistocene and Holocene environments of the Southeastern United States from the stratigraphy and pollen content of a peat deposit on the Georgia Coastal Plain. Palaeogeogr. Palaeoclimatol. Palaeoecol., 280, 300–312.
    [Google Scholar]
  57. Leckie, D.A., Wallace‐Dudley, K.E., Vanbeselaere, N.A. & James, D.P. (2004) Sedimentation in a low‐accommodation setting: nonmarine (Cretaceous) Mannville and marine (Jurassic) Ellis Groups, Manyberries Field, southeastern Alberta,. Am. Assoc. Petrol. Geol. Bull., 88, 1391–1418.
    [Google Scholar]
  58. Leeder, M.R., Harris, T. & Kirkby, M.J. (1998) Sediment supply and climate change: implications for basin stratigraphy. Basin Res., 10, 7–18.
    [Google Scholar]
  59. Legarreta, L. & Uliana, M.A. (1998) Anatomy of hinterland depositional sequences: upper Cretaceous fluvial strata, Neuquen Basin, West‐Central Argentina. In: Relative Role of Eustasy, Climate and Tectonism in Continental Rocks (Ed. by ShanleyK.W. & McCabeP.J. ) SEPM Special Publication, 59, 83–92.
    [Google Scholar]
  60. Leroy, S.A.G., López‐Merino, L., Tudryn, A. & Chalié, F. (2014) Late Pleistocene and Holocene palaeoenvironments in and around the middle Caspian basin as reconstructed from a deep‐sea core. Quat. Sci. Rev., 101, 91–110.
    [Google Scholar]
  61. Lin, C., Zhuo, H. & Gao, S. (2005) Sedimentary facies and evolution in the Qiantang River incised valley, eastern China. Mar. Geol., 219, 235–259.
    [Google Scholar]
  62. Maesano, F.E., D'ambrogi, C., Burrato, P. & Toscani, G. (2015) Slip‐rates of blind thrusts in slow deforming areas: examples from the Po Plain (Italy). Tectonophysics, 643, 8–25.
    [Google Scholar]
  63. Martinsen, O.J., Ryseth, A., Helland‐Hansen, W., Flesche, H., Torkildsen, G. & Idil, S. (1999) Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Sorings Uplift, SW Wyoming, USA. Sedimentology, 46, 235–259.
    [Google Scholar]
  64. Massey, A.C., Paul, M.A., Gehrels, W.R. & Charman, D.J. (2006) Autocompaction in Holocene coastal back‐barrier sediments from south Devon, southwest England, UK. Mar. Geol., 226, 225–241.
    [Google Scholar]
  65. McCarthy, P.J. & Plint, A.G. (1998) Recognition of interfluve sequence boundaries: integrating paleopedology and sequence stratigraphy. Geology, 26, 387–390.
    [Google Scholar]
  66. McCarthy, P.J., Faccini, U.F. & Plint, A.G. (1999) Evolution of an ancient coastal plain: palaeosols, interfluves and alluvial architecture in a sequence stratigraphic framework, Cenomanian Dunvegan Formation, NE British Columbia, Canada. Sedimentology, 46, 861–891.
    [Google Scholar]
  67. Molodkov, A. & Bitinas, A. (2006) Sedimentary record and luminescence chronology of the Lateglacial and Holocene aeolian sediments in Lithuania. Boreas, 35, 244–254.
    [Google Scholar]
  68. Mozzi, P., Bini, C., Zilocchi, L., Becattini, R. & Mariotti Lippi, M. (2003) Stratigraphy, palaeopedology and palinology of late Pleistocene and Holocene deposits in the landward sector of the lagoon of Venice (Italy), in relation to caranto level. Il Quaternario, 16, 193–210.
    [Google Scholar]
  69. Nahm, W., Kim, J.C., Bong, P., Kim, J., Yang, D. & Yu, K. (2008) Late Quaternary stratigraphy of the Yeongsan Estuary, Southwestern Korea. Quat. Int., 176–177, 13–24.
    [Google Scholar]
  70. Olsen, T., Steel, R., Hogseth, K., Skar, T. & Roe, S.L. (1995) Sequential architecture in a fluvial succession: sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Price Canyon, Utah. J. Sediment. Res., B65, 265–280.
    [Google Scholar]
  71. Pandarinath, K., Shankar, R. & Yadava, M.G. (2001) Late Quaternary changes in sea level and sedimentation rate along the SW coast of India: evidence from radiocarbon dates. Curr. Sci., 81, 594–600.
    [Google Scholar]
  72. Pini, G.A. (1999) Tectonosomes and olistostromes in the argille scagliose of the Northern Apennines, Italy. Geol. Soc. Am. Spec. Pap., 335, 1–70.
    [Google Scholar]
  73. Plint, A.G., McCarthy, P.J. & Faccini, U.F. (2001) Nonmarine sequence stratigraphy: updip expression of sequence boundaries and systems tracts in a high‐resolution framework, Cenomanian Dunvegan Formation, Alberta foreland basin, Canada. Am. Assoc. Pet. Geol. Bull., 85, 1967–2001.
    [Google Scholar]
  74. Posamentier, H.W., Jervey, M.T. & Vail, P.R. (1988) Eustatic controls on clastic deposition I – conceptual framework. In: Sea‐Level Changes: An Integrated Approach (Ed. by WilgusC.K. , HastingsB.S. , KendallC.G.C. , PosamentierH.W. , RossC.A. & Van WagonerJ.C. ) SEPM Special Publication, 42, 109–124.
    [Google Scholar]
  75. Ramaekers, P. & Catuneanu, O. (2004) Development and sequences of the Athabasca Basin, Early Proterozoic, Saskatchewan and Alberta, Canada. In: The Precambrian Earth: Tempos and Events, Developments in Precambrian Geology, 12, (Ed. by P.G.Eriksson , W.Altermann , D.Nelson , W.Mueller & O.Catuneanu ), pp. 705–723. Elsevier Science Ltd., Amsterdam.
    [Google Scholar]
  76. Regione Emilia‐Romagna
    Regione Emilia‐Romagna & ENI–AGIP (1998) Riserve idriche sotterranee della Regione Emilia‐Romagna. S.EL.CA., Firenze.
    [Google Scholar]
  77. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.A., Southon, J.R., Staff, R.A., Turney, C.S.M. & Van Der Plicht, J. (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0‐50,000 years cal BP. Radiocarbon, 55/4, 1869–1887.
    [Google Scholar]
  78. Ricci Lucchi, F. (1986) Oligocene to recent foreland basins of northern Apennines. In: Foreland Basins (Ed. by AllenP. & HomewoodP. ) International Association of Sedimentologists Special Publication, 8, 105–139. Blackwell Scientific, London.
    [Google Scholar]
  79. Sadler, P.M. (1981) Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol., 89, 569–584.
    [Google Scholar]
  80. Sarkar, A., Sengupta, S., McArthur, J.M., Ravenscroft, P., Bera, M.K., Bhushan, R., Samanta, A. & Agrawal, S. (2009) Evolution of Ganges‐Brahmaputra western delta plain: clues from sedimentology and carbon isotopes. Quat. Sci. Rev., 28, 2564–2581.
    [Google Scholar]
  81. Scarponi, D., Kaufman, D., Amorosi, A. & Kowalewski, M. (2013) Sequence stratigraphy and the resolution of the fossil record. Geology, 41/2, 239–242.
    [Google Scholar]
  82. Simoni, A., Ponza, A., Picotti, V., Berti, M. & Dinelli, E. (2013) Earthflow sediment production and Holocene sediment record in a large Apennine catchment. Geomorphology, 188, 42–53.
    [Google Scholar]
  83. Sivan, D., Greenbaum, N., Cohen‐Seffer, R., Sisma‐Ventura, G. & Almogi‐Labin, A. (2011) The origin and disappearance of the Late Pleistocene‐Early Holocene short‐lived coastal wetlands along the Carmel coast, Israel. Quat. Res., 76, 83–92.
    [Google Scholar]
  84. Stefani, M. & Vincenzi, S. (2005) The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Mar. Geol., 222–223, 19–48.
    [Google Scholar]
  85. Storms, J.E.A., Weltje, G.J., Terra, G.J., Cattaneo, A. & Trincardi, F. (2008) Coastal dynamics under conditions of rapid sea level rise: late Pleistocene to Early Holocene evolution of barrier–lagoon systems on the northern Adriatic shelf (Italy). Quat. Sci. Rev., 27, 1107–1123.
    [Google Scholar]
  86. Stouthamer, E. & Berendsen, H.J.A. (2007) Avulsion: the relative roles of autogenic and allogenic processes. Sediment. Geol., 198, 309–325.
    [Google Scholar]
  87. Tanabe, S., Hori, K., Saito, Y., Haruyama, S., Vu, V.P. & Kitamura, A. (2003) Song Hong (Red River) delta evolution related to millennium‐scale Holocene sea‐level changes. Quat. Sci. Rev., 22, 2345–2361.
    [Google Scholar]
  88. Tanabe, S., Nakanishi, T., Matsushima, H. & Hong, W. (2013) Sediment accumulation patterns in a tectonically subsiding incised valley: insight from the Echigo Plain, central Japan. Mar. Geol., 336, 33–43.
    [Google Scholar]
  89. Tanabe, S., Nakanishi, T., Ishihara, Y. & Nakashima, R. (2015) Millennial‐scale stratigraphy of a tide‐dominated incised valley during the last 14 kyr: spatial and quantitative reconstruction in the Tokyo Lowland, central Japan. Sedimentology. doi:10.1111/sed.12204.
    [Google Scholar]
  90. Teatini, P., Tosi, L. & Strozzi, T. (2011) Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res., 116, B08407.
    [Google Scholar]
  91. Törnqvist, T.E. & Bridge, J.S. (2002) Spatial variation of overbank aggradation rate and its influence on avulsion frequency. Sedimentology, 49, 891–905.
    [Google Scholar]
  92. Törnqvist, T.E., Wallace, D.J., Storms, J.E.A., Wallinga, J., Van Dam, R.L., Blaauw, M., Derksen, M.S., Klerks, C.J.W., Meijneken, C. & Snijders, E.M.A. (2008) Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci., 1, 173–176.
    [Google Scholar]
  93. Trincardi, F. & Correggiari, A. (2000) Quaternary forced regression deposits in the Adriatic basin and the record of composite sea‐level cycles. In: Sedimentary Response to Forced Regressions (Ed. by HuntD. & GawthorpeR.L. ) Geological Society of London Special Publication, 172, 245–269.
    [Google Scholar]
  94. Umitsu, M. (1993) Late Quaternary sedimentary environments and landforms in the Ganges delta. Sediment. Geol., 83, 177–186.
    [Google Scholar]
  95. Van Wagoner, J.C., Mitchum, R.M., Campion, K.M. & Rahmanian, V.D. (1990) Siliciclastic sequence stratigraphy in well logs, cores and outcrops: concepts for high resolution correlations of time and facies. American Association of American Petroleum Geologists, Methods in Exploration, 7, Barbara H. Lidtz, Tulsa, USA, 55pp.
    [Google Scholar]
  96. Vandenberghe, J. (2003) Climate forcing of fluvial system development: an evolution of ideas. Quat. Sci. Rev., 22, 2053–2060.
    [Google Scholar]
  97. Vescovi, E., Kaltenrieder, P. & Tinner, W. (2010) Late‐Glacial and Holocene vegetation history of Pavullo nel Frignano (Northern Apennines, Italy). Rev. Palaeobot. Palynol., 160, 32–45.
    [Google Scholar]
  98. Vis, G.J. & Kasse, C. (2009) Late Quaternary valley‐fill succession of the Lower Tagus Valley, Portugal. Sedimet. Geol., 221, 19–39.
    [Google Scholar]
  99. Wallinga, J., Hobo, N., Cunningham, A.C., Versendaal, A.J., Makaske, B. & Middelkoop, H. (2010) Sedimentation rates on embanked floodplains determined through quartz optical dating. Quat. Geochronol., 5, 170–175.
    [Google Scholar]
  100. Weschenfelder, J., Baitelli, R., Corrêa, I.C.S., Bortolin, E.C. & Dos Santos, C.B. (2014) Quaternary incised valleys in southern Brazil coastal zone. J. South Am. Earth Sci., 55, 83–93.
    [Google Scholar]
  101. Wright, V.P. & Marriott, S.B. (1993) The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage. Sediment. Geol., 86, 203–210.
    [Google Scholar]
  102. Yi, L., Yu, H.J., Ortiz, J.D., Xu, X.Y., Chen, S.L., Ge, J.Y., Hao, Q.Z., Yao, J., Shi, X.F. & Peng, S.Z. (2012) Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 329–330, 101–117.
    [Google Scholar]
  103. Yoo, D.G., Kim, S.P., Chang, T.S., Kong, G.S., Kang, N.K., Kwon, Y.K., Nam, S.L. & Park, S.C. (2014) Late Quaternary inner shelf deposits in response to late Pleistocene‐Holocene sea level changes: Nakdong River, SE Korea. Quat. Int., 344, 156–169.
    [Google Scholar]
  104. Zaitlin, B.A., Dalrymple, R.W. & Boyd, R. (1994) The stratigraphic organization of incised‐valley systems associated with relative sea‐level change. In: Incised‐Valley Systems: Origin and Sedimentary Sequences (Ed. by DalrympleR.W. , BoydR. & ZaitlinB.A. ) SEPM, Special Publication, 51, 45–60.
    [Google Scholar]
  105. Zaitlin, B.A., Warren, M.J., Potocki, D., Rosenthal, L. & Boyd, R. (2002) Depositional styles in a low accommodation foreland setting: an example from the Basal Quartz (Lower Cretaceous), southern Alberta. Bull. Can. Pet. Geol., 50, 31–72.
    [Google Scholar]
  106. Zhang, J., Liu, C., Wu, X., Liu, K. & Zhou, L. (2012) Optically stimulated luminescence and radiocarbon dating of sediments from Lop Nur (Lop Nor), China. Quat. Geochronol., 10, 150–155.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12174
Loading
/content/journals/10.1111/bre.12174
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error