1887
Volume 15 Number 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

To improve the denoising performance of seismic data contaminated with random and coherent noises, a hybrid denoising scheme is proposed in this paper. It aims to whiten the random noise and identify the coherent noise for the preserved or prominent seismic features. Using the wavelet and curvelet basis functions in curvelets alternately, the hybrid denoising scheme utilises the representation of edges and singularities along curves. Then it adapts the wavelet‐based higherorder correlative stacking denoising method from seismic exploration sequentially. With regard to seismic records for bedrock surface detection after the artificial backfill, the noisy data are significantly improved both in terms of denoising and improving fidelity. To illustrate the advantage of the hybrid denoising scheme, a comparison of the performances between the different individual denoising methods, including the higher‐order correlative stacking method and curvelets with wavelet and curvelet basis functions, has been presented for the complex seismic records contaminated with different noises. Numerical case studies and a field data analysis have been used to show that the proposed hybrid denoising scheme is more effective for seismic data containing complex features than the individual denoising methods.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017009
2017-02-01
2024-04-18
Loading full text...

Full text loading...

References

  1. BonarD. and SacchiM.2012. Denoising seismic data using the nonlocal means algorithm. Geophysics77(1), A5–A8.
    [Google Scholar]
  2. CandèsE.J. and DonohoD.L.2004. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Communications on Pure and Applied Mathematics57(2), 219–266.
    [Google Scholar]
  3. CandèsE., DemanetL., DonohoD. and YingL.2006. Fast discrete curvelet transforms. Multiscale Modeling & Simulation5(3), 861–899.
    [Google Scholar]
  4. ChenY., GanS., LiuT., YuanJ., ZhangY. and JinZ.2014a. Random noise attenuation by a selective hybrid approach using f‐x empirical mode decomposition. Journal of Geophysics and Engineering12(1), 12.
    [Google Scholar]
  5. ChenY., FomelS. and HuJ.2014b. Iterative deblending of simultaneous‐source seismic data using seislet‐domain shaping regularization. Geophysics79(5), V179–V189.
    [Google Scholar]
  6. ChenY. and MaJ.2014. Random noise attenuation by fx empirical‐mode decomposition predictive filtering. Geophysics79(3), V81–V91.
    [Google Scholar]
  7. ChopraS. and MarfurtK.J.2015. Choice of mother wavelets in CWT spectral decomposition. 2015 SEG annual meeting. Society of Exploration Geophysicists.
    [Google Scholar]
  8. DuarteL.T., DonnoD., LopesR.R. and RomanoJ.M.T.2014. Seismic signal processing: some recent advances. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2362–2366. Institute of Electrical and Electronics Engineers.
    [Google Scholar]
  9. GórszczykA., AdamczykA. and MalinowskiM.2014. Application of curvelet denoising to 2D and 3D seismic data—practical considerations. Journal of Applied Geophysics105, 78–94.
    [Google Scholar]
  10. HerrmannF.J., WangD., HennenfentG. and MoghaddamP.P.2007. Curvelet‐based seismic data processing: a multiscale and nonlinear approach. Geophysics73(1), A1–A5.
    [Google Scholar]
  11. KreimerN. and SacchiM.D.2012. A tensor higher‐order singular value decomposition for prestack seismic data noise reduction and interpolation. Geophysics77(3), V113–V122.
    [Google Scholar]
  12. LiJ.H., HeZ.X. and LiuQ.H.2013. Higher‐order statistics correlation stacking for DC electrical data in the wavelet domain. Journal of Applied Geophysics99, 51–59.
    [Google Scholar]
  13. LiJ.H., ZhangY.J., QiR., LiuQ.H. and XiongB.2016. Wavelet‐based higher order correlative stacking for seismic data processing in curvelet domain. Manuscript in review.
    [Google Scholar]
  14. LiuY., FomelS. and LiuC.2015. Signal and noise separation in prestack seismic data using velocity‐dependent seislet transform. Geophysics80(6), WD117–WD128.
    [Google Scholar]
  15. LopezG.A. and VerschuurD.J.2015. Closed‐loop surface‐related multiple elimination and its application to simultaneous data reconstruction. Geophysics80(6), V189–V199.
    [Google Scholar]
  16. MaJ. and PlonkaG.2010. A review of curvelets and recent applications. IEEE Signal Processing Magazine27(2), 118–133.
    [Google Scholar]
  17. MauriG., Williams‐JonesG., SaraccoG. and ZurekJ.M.2012. A geo‐chemical and geophysical investigation of the hydrothermal complex of Masaya volcano, Nicaragua. Journal of Volcanology and Geothermal Research227, 15–31.
    [Google Scholar]
  18. NeelamaniR., BaumsteinA.I., GillardD.G., HadidiM.T. and SorokaW.L.2008. Coherent and random noise attenuation using the curvelet transform. The Leading Edge27(2), 240–248.
    [Google Scholar]
  19. NaghizadehM.2012. Seismic data interpolation and denoising in the frequency‐wavenumber domain. Geophysics77(2), V71–V80.
    [Google Scholar]
  20. OliveiraM.S., HenriquesM.V.C., LeiteF.E.A., CorsoG. and LucenaL.S.2012. Seismic denoising using curvelet analysis. Physica A: Statistical Mechanics and Its Applications391(5), 2106–2110.
    [Google Scholar]
  21. OropezaV. and SacchiM.2011. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics76(3), V25–V32.
    [Google Scholar]
  22. PlonkaG. and MaJ.2011. Curvelet‐wavelet regularized split Bregman iteration for compressed sensing. International Journal of Wavelets, Multiresolution and Information Processing9(1), 79–110.
    [Google Scholar]
  23. PlonkaG., TenorthS. and RosxaD.2011. A new hybrid method for image approximation using the easy path wavelet transform. IEEE Transactions on Image Processing20(2), 372–381.
    [Google Scholar]
  24. RobinsonJ.C.1970. Statistically optimal stacking of seismic data. Geophysics35(3), 436–446.
    [Google Scholar]
  25. RoueffA., ChanussotJ. and MarsJ.I.2006. Estimation of polarization parameters using time‐frequency representations and its application to waves separation. Signal Processing86(12), 3714–3731.
    [Google Scholar]
  26. RussoF.2007. An‐image enhancement system based on noise estimation. IEEE Transactions on Instrumentation and Measurement56, 1435–1442.
    [Google Scholar]
  27. SaevarssonB.B., SveinssonJ.R. and BenediktssonJ.A.2004. Combined wavelet and curvelet denoising of SAR images. Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS'04)6, 4235–4238.
    [Google Scholar]
  28. SaraccoG., MoreauF., MathéP.E., HermitteD. and MichelJ.M.2007. Multiscale tomography of buried magnetic structures: its use in the localization and characterization of archaeological structures. Geophysical Journal International171(1), 87–103.
    [Google Scholar]
  29. ShanH., MaJ. and YangH.2009. Comparisons of wavelets, contourlets and curvelets in seismic denoising. Journal of Applied Geophysics69(2), 103–115.
    [Google Scholar]
  30. StarckJ.L., NguyenM.K. and MurtaghF.2003. Wavelets and curvelets for image deconvolution: a combined approach. Signal Processing83(10), 2279–2283.
    [Google Scholar]
  31. TangG. and MaJ.2011. Application of total‐variation‐based curvelet shrinkage for three‐dimensional seismic data denoising. IEEE Geoscience and Remote Sensing Letters8(1), 103–107.
    [Google Scholar]
  32. TreebyB.E. and CoxB.T.2010. k‐Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. Journal of Biomedical Optics15(2), 021314–021314‐12.
    [Google Scholar]
  33. VentosaS., RabesonH. and DuvalL.2011. Coherent noise removal in seismic data with redundant multiscale directional filters. 19th European Signal Processing Conference, pp. 1150–1154. Institute of Electrical and Electronics Engineers.
    [Google Scholar]
  34. VentosaS., Le RoyS., HuardI., PicaA., RabesonH., RicarteP. et al 2012. Adaptive multiple subtraction with wavelet‐based complex unary Wiener filters. Geophysics77(6), V183–V192.
    [Google Scholar]
  35. VuongA.K., ZhangJ., GibsonR.L. and SagerW.W.2015Application of the two‐dimensional continuous wavelet transforms to imaging of the Shatsky Rise plateau using marine seismic data. Geological Society of America Special Papers511, SPE511–07.
    [Google Scholar]
  36. WangD., SaabR., YilmazÖ. and HerrmannF.J.2008. Bayesian wave‐field separation by transform‐domain sparsity promotion. Geophysics73, A33–A38.
    [Google Scholar]
  37. WardenS., GaramboisS., SailhacP., JouniauxL. and BanoM.2012. Curvelet‐based seismoelectric data processing. Geophysical Journal International190(3), 1533–1550.
    [Google Scholar]
  38. XueY., CaoJ., TianR., DuH.K. and YaoY.2015. Wavelet‐based spectrum decomposition of seismic data and its application in hydrocarbon detection. Geophysical Prospecting.
    [Google Scholar]
  39. YangP., GaoJ. and ChenW.2012. Curvelet‐based POCS interpolation of nonuniformly sampled seismic records. Journal of Applied Geophysics79, 90–99.
    [Google Scholar]
  40. ZegadiA. and ZegadiK.K.2009. Coherent and random noise attenuation using the intrinsic time‐scale decomposition. 2009 SEG annual meeting. Society of Exploration Geophysicists.
    [Google Scholar]
  41. ZengY.Q. and LiuQ.H.2004. A multidomain PSTD method for 3D elastic wave equations. Bulletin of the Seismological Society of America94(3), 1002–1015.
    [Google Scholar]
  42. ZhangH., LiuT. and ZhangY.2009. Denoising of seismic data via multi‐scale ridgelet transform. Earthquake Science22(5), 493–498.
    [Google Scholar]
  43. ZhangS.Z. and XuY.X.2006. Higher‐order correlation stacking for seismic data in the wavelet domain. Chinese Journal of Geophysics49(2), 554–560.
    [Google Scholar]
  44. ZhangX.D.1996. Time Sequence Analysis‐Higher–Order Statistics Method. Beijing, China: Tsinghua University Press.
    [Google Scholar]
  45. ZhangZ., ZhangX., YuH. and PanX.H.2010. Noise suppression based on a fast discrete curvelet transform. Journal of Geophysics and Engineering7(1), 105.
    [Google Scholar]
  46. ZhengJ.J., YinX.Y., ZhangG.Z., WuG.H. and ZhangZ.S.2010. The surface wave suppression using the second generation curvelet transform. Applied Geophysics7(4), 325–335.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017009
Loading
/content/journals/10.3997/1873-0604.2017009
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error