1887
Volume 15 Number 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

A newly developed broadband digital‐based seismic landstreamer system was employed for the planning of a double‐train‐track tunnel in the city of Varberg, southwest Sweden. Twenty‐five seismic profiles, totalling more than 7.5 km of data, were acquired using a 2‐ to 4‐m receiver and source spacing. At places where it was not possible to move the streamer such as road crossings, wireless recorders connected to 28‐Hz geophones were used. In addition to the earlier refraction data analysis and first‐break traveltime tomographic modelling, reflection processing of the data was considered in this study, given the realisation of reflections in raw shot gathers and their good quality. Bedrock is strongly reflective in most cases but is not evident in the sections when it gets near the surface. Bedrock undulation is noticeable in most reflection sections, and at one occasion, strong diffraction is observed in the bedrock or near to it. The diffraction is originated, not known during the survey, from a 400‐m3 cylindrical (of about 3‐m‐height and 13‐m‐diameter) concrete‐made fire‐protection water tank situated in the bedrock and used in emergency situations. Reflection seismic data greatly complement the tomographic models and support deep bedrock where the excavation of the tunnel is planned in downtown Varberg. This interpretation implies different reinforcements and tunnel construction methods (e.g., roofed concrete) at this section of the tunnel. In addition, weakness zones associated with fracture systems are inferred from the reflection characteristics and in conjunction with the velocity models requiring verification by additional boreholes.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017011
2017-03-01
2024-04-26
Loading full text...

Full text loading...

References

  1. AdamczykA., MalinowskiM. and MalehmirA.2013. Application of first‐arrival tomography to characterize a quick‐clay landslide site in southwest Sweden.Acta Geophysica61, 1057–1073.
    [Google Scholar]
  2. AdamczykA., MalinowskiM. and MalehmirA.2014. High‐resolution near‐surface velocity model building using full‐waveform inversion— A case study from southwest Sweden.Geophysical Journal International197, 1693–1704.
    [Google Scholar]
  3. BakerG., SteeplesD., SchmeissnerC. and SpikesK.2000. Collecting seismic‐reflection data from depths shallower than three meters.Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 1207–1214. Environment and Engineering Geophysical Society.
    [Google Scholar]
  4. BartonN.2006. Rock Quality, Seismic Velocity, Attenuation and Anisotropy.Taylor & Francis.
    [Google Scholar]
  5. BartonN.2007. Near‐surface gradients of rock quality, deformation modulus, Vp and Qp to 1 km depth.First Break25, 53–60.
    [Google Scholar]
  6. BastaniM., PerssonL., MehtaS. and MalehmirA.2015. Boat‐towed radio‐magnetotellurics (RMT)—A new technique and case study from the city of Stockholm.Geophysics80, B193–B202.
    [Google Scholar]
  7. BenjumeaB., HunterJ.A., GoodR.L., BurnsR.A. and RossM.2001. Application of high‐resolution seismic‐reflection techniques in Champlain sea sediments near Lachute‐Saint‐Benoit, Quebec.Current Research 2001 D6, 7. Geological Survey of Canada.
    [Google Scholar]
  8. BenjumeaB., HunterJ.A., PullanS.E., BrooksG.R., PyneM. and AylsworthJ.M.2008. Vs(30) and fundamental site period estimates in soft sediments of the Ottawa Valley from near‐surface geophysical measurements.Journal of Environmental and Engineering Geophysics13(4), 313–323.
    [Google Scholar]
  9. BenjumeaB., MacauA., GabàsA., BellmuntF., FiguerasS. and CirésJ.2011. Integrated geophysical profiles and H/V microtremor measurements for subsoil characterization.Near Surface Geophysics9, 413–425.
    [Google Scholar]
  10. BlackR.A., SteeplesD.W. and MillerR.D.1994. Migration of shallow seismic reflection data.Geophysics59, 402–410.
    [Google Scholar]
  11. BrodicB., MalehmirA., JuhlinC., DynesiusL., BastaniM. and PalmH.2015. Multicomponent broadband digital‐based seismic landstreamer for near‐surface applications.Journal of Applied Geophysics123, 227–241.
    [Google Scholar]
  12. BrodicB., MalehmirA. and JuhlinC.2016. Fracture system characterization using wave‐mode conversions and tunnel‐surface seismics.Near Surface Geoscience Conference, Barcelona, Spain.
    [Google Scholar]
  13. BrojerdiF.S., ZhangF., JuhlinC., MalehmirA., LehtimäkiT., MattssonH. et al. 2014. High resolution seismic imaging at the planned tunnel entrance to the Forsmark repository for spent nuclear fuel, central Sweden.Near Surface Geophysics12, 709–719.
    [Google Scholar]
  14. BükerF., GreenA.G. and HorstmeyerH.1998. Shallow seismic reflection study of a glaciated valley.Geophysics63, 1395–1407.
    [Google Scholar]
  15. CosmaC., HeikkinenP., KeskinenJ. and EnescuN.2001a. VSP in crystalline rocks—From downhole velocity profiling to 3‐D fracture mapping.International Journal of Rock Mechanics & Mining Sciences38, 843–850.
    [Google Scholar]
  16. CosmaC., OlssonO., KeskinenJ. and HeikkinenP.2001b. Seismic characterization of fracturing at the Äspö Hard Rock Laboratory, Sweden, from the kilometer scale to the meter scale.International Journal of Rock Mechanics & Mining Sciences38, 859–865.
    [Google Scholar]
  17. DehghannejadM., JuhlinC., MalehmirA., SkyttäP. and WeihedP.2010. Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden.Journal of Applied Geophysics71, 125–136.
    [Google Scholar]
  18. DehghannejadM., MalehmirA., JuhlinC. and SkyttäP.2012. 3D constraints and finite‐difference modeling of massive sulfide deposits: the Kristineberg seismic lines revisited, northern Sweden.Geophysics77, WC69–WC79.
    [Google Scholar]
  19. EikenO., DegutschM., RisteP. and RødK.1989. Snowstreamer: an efficient tool in seismic acquisition.First Break7.
    [Google Scholar]
  20. GabàsA., MacauA., BenjumeaB., BellmuntF., FiguerasS. and VilàM.2014. Combination of geophysical methods to support urban geological mapping.Surveys in Geophysics35, 983–1002.
    [Google Scholar]
  21. HarlovD.E., van den KerkhofA. and JohanessonL.2013. The Varberg‐Torpa Charnockite‐Granite association, SW Sweden: mineralogy, petrology, and fluid inclusion chemistry.Journal of Petrology54, 3–40.
    [Google Scholar]
  22. HarlovD.E., van den KerkhofA. and JohanessonL.2014. Localized, solid‐state dehydration associated with the Varberg charnockite intrusion, SW Sweden.Precambrian Research253, 50–62.
    [Google Scholar]
  23. KaiserA.E., GreenA.G., CampbellF.M., HorstmeyerH., ManukyanE., LangridgeR.M. et al. 2009. Ultrahigh‐resolution seismic reflection imaging of the Alpine Fault, New Zealand.Journal of Geophysical Research114.
    [Google Scholar]
  24. KrawczykC.M., PolomU., TrabsS. and DahmT.2012. Sinkholes in the city of Hamburg—New urban shear‐wave reflection seismic system enables high‐resolution imaging of sub‐erosion structures.Journal of Applied Geophysics78, 133–143.
    [Google Scholar]
  25. KrawczykC., PolomU. and BeileckeT.2013. Shear‐wave reflection seismics as a valuable tool for near‐surface urban applications.The Leading Edge32, 256–263.
    [Google Scholar]
  26. InazakiT.2012. Development and utilization of an S‐wave type land streamer for high‐resolution reflection surveying.74th EAGE Conference and Exhibition.
    [Google Scholar]
  27. LundbergE., MalehmirA., JuhlinC., BastaniM. and AnderssonM.2014. High‐resolution 3D reflection seismic investigation over a quickclay landslide scar in southwest Sweden.Geophysics79(2), B97–B107.
    [Google Scholar]
  28. MalehmirA., DahlinP., LundbergE., JuhlinC., SjöströmH. and HögdahlK.2011. Reflection seismic investigations in the Dannemora area, central Sweden: insights into the geometry of poly‐phase deformation zones and magnetite‐skarn deposits.Journal of Geophysical Research116, B11307.
    [Google Scholar]
  29. MalehmirA., BastaniM., KrawzyckC., GurkM., IsmailN., PolomU. et al. 2013a. Geophysical assessment and geotechnical investigation of quick‐clay landslides—A Swedish case study.Near Surface Geophysics11, 341–350.
    [Google Scholar]
  30. MalehmirA., SaleemM.U. and BastaniM.2013b. High‐resolution reflection seismic investigations of quick‐clay and associated formations at a landslide scar in southwest Sweden.Journal of Applied Geophysics92, 84–102.
    [Google Scholar]
  31. MalehmirA., WangS., LamminenJ., BrodicB., BastaniM., VaittinenK. et al. 2015a. Delineating structures controlling sandstone‐hosted base‐metal deposits using high‐resolution multicomponent and radio‐magnetotelluric methods, a case study from northern Sweden.Geophysical Prospecting63, 774–797.
    [Google Scholar]
  32. MalehmirA., ZhangF., DehghannejadM., LundbergE., DöseC., FribergO. et al. 2015b. Planning of urban underground infrastructure using a broadband seismic landstreamer—Tomography results and uncertainty quantifications from a case study in southwestern Sweden.Geophysics80, B177–B192.
    [Google Scholar]
  33. MalehmirA., AnderssonM., MehtaS., BrodicB., MunierR., PlaceJ. et al. 2016a. Post‐glacial reactivation of the Bollnäs fault, central Sweden—A multidisciplinary geophysical investigation.Solid Earth7, 509–527.
    [Google Scholar]
  34. MalehmirA., SoccoL.V., BastaniM., KrawczykC.M., PfaffhuberA.A., MillerR.D. et al. 2016b. Near‐surface geophysical characterization of areas prone to natural hazards: a review of the current and perspective on the future. In: Advances in Geophysics, Vol. 57 (ed L.Nielsen ), pp. 51–146.
    [Google Scholar]
  35. MalehmirA., HeinonenS., DehgahnnejadM., HeinoP., MariesG., KarellF. et al. 2017. Landstreamer seismics and physical property measurements in the Siilinjärvi open‐pit apatite (phosphate) mine, central Finland.Geophysics82, B29–B48.
    [Google Scholar]
  36. MartíD., CarbonellR., FlechaI., PalomerasI., Font‐CapoJ., Vazquez‐SunéE. et al. 2008. High‐resolution seismic characterisation in an urban area: subway tunnel construction in Barcelona, Spain.Geophysics74, B41–B50.
    [Google Scholar]
  37. MartinezK. and AlfredoM.J.2011. Urban seismic site investigations for a new metro in central Copenhagen: near surface imaging using reflection refraction and VSP methods.Physics and Chemistry of the Earth36, 1228–1236.
    [Google Scholar]
  38. MillerR., PullanS., WaldnerJ. and HaeniF.1986. Field comparison of shallow seismic sources.Geophysics51, 2067–2092.
    [Google Scholar]
  39. MillerR.D., BradfordJ.H. and HolligerK.2010. Advances in Near‐ surface seismology and ground‐penetrating radar.Geophysical Developments Series, No. 15.
    [Google Scholar]
  40. PalmerD.2006. Refraction traveltime and amplitude corrections for very near‐surface inhomogeneities.Geophysical Prospecting54, 589–604.
    [Google Scholar]
  41. PlaceJ.A.P., MalehmirA., HögdahlK., JuhlinC. and Persson NilssonK.2015. Seismic characterization of the Grängesberg iron deposit and its mining‐induced structures, central Sweden.Interpretation3, SY41–SY56.
    [Google Scholar]
  42. PlaceJ.A.P. and MalehmirA.2016. Using supervirtual first arrivals in controlled‐source hardrock seismic imaging—Well worth the effort.Geophysical Journal International206, 716–730.
    [Google Scholar]
  43. PolomU., HansenL., SauvinG., L’HeureuxJ‐S., LecomteI., KrawczykC.M. et al. 2010. High‐resolution SH‐wave seismic reflection for characterization of onshore ground conditions in the Trondheim Harbor, central Norway. In:Advances in Near‐Surface Seismology and Ground‐Penetrating Radar (eds R.D.Miller , J.H.Bradford and K.Holliger ), Geophysical Developments Series 15, 297–312.
    [Google Scholar]
  44. PolomU., HofstedeC., DiezA. and EisenO.2012. Shallow shear wave reflection seismic on firn and ice—Insights, challenges and opportunities from a small scale experiment at Colle Gnifetti.EAGE 2012.
    [Google Scholar]
  45. PuginA.J., LarsonT.H., SargentS.L., McBrideJ.H. and BexfieldC.E.2004. Near‐surface mapping using SH‐wave and P‐wave seismic land‐streamer data acquisition in Illinois, U.S.The Leading Edge23, 677–682.
    [Google Scholar]
  46. PuginA.J.M., PullanS.E., HunterJ.A. and OldenborgerG.A.2009. Hydrogeological prospecting using P‐ and S‐wave landstreamer seismic reflection methods.Near Surface Geophysics7, 315–327.
    [Google Scholar]
  47. PuginA.J.M., PullanS. and HunterJ.A.2013. Shear‐wave high‐resolution seismic reflection in Ottawa and Quebec City, Canada.The Leading Edge32, 250–255.
    [Google Scholar]
  48. Salas‐RomeroS., MalehmirA., SnowballI., Lougheed BryanC., HellqvistM. and TorranceK.2015. Preconditions to Swedish quick clay landslides identified by geophysical borehole and core data.Landslide.
    [Google Scholar]
  49. SloanS.D., TsofliasG.P., SteeplesD.W. and VincentP.D.2007. Highresolution ultra‐shallow subsurface imaging by integrating near‐surface seismic reflection and ground‐penetrating radar data in the depth domain.Journal of Applied Geophysics62, 281–286.
    [Google Scholar]
  50. SchmelzbachC., GreenA.G. and HorstmeyerH.2005. Ultra‐shallow seismic reflection imaging in a region characterized by high source‐generated noise.Near Surface Geophysics3, 33–46.
    [Google Scholar]
  51. SchmelzbachC., HorstmeyerH. and JuhlinC.2007. Shallow 3D seismic‐reflection imaging of fracture zones in crystalline rock.Geophysics72, B149–B160.
    [Google Scholar]
  52. SollbergerD., SchmelzbachC., HorstmeyerH., ReiserF., RabensteinL., MaurerH. et al. 2014. Mapping near surface‐elastic parameters of Quaternary sediments using multicomponent seismic techniques.Geophysical Research Abstracts16, 4014.
    [Google Scholar]
  53. SteeplesD. and MillerR.1998. Avoiding pitfalls in shallow seismic reflection surveys.Geophysics63, 1213–1224.
    [Google Scholar]
  54. StümpelH., KahlerS., MeissnerR. and MilkereiB.1984. The use of seismic shear waves and compressional waves for lithological problems of shallow sediments.Journal of Geophysical Prospecting32, 660–675.
    [Google Scholar]
  55. Trafikverket.2016. http://www.trafikverket.se/varbergstunneln. Accessed: 27 June September 2016.
  56. van der VeenM. and GreenA.G.1998. Land streamer for shallow seismic data acquisition: evaluation of gimbal‐mounted geophones.Geophysics63, 1408–1413.
    [Google Scholar]
  57. van der VeenM., BunessH.A., BükerF. and GreenA.G.2000. Field comparison of high frequency seismic sources for imaging shallow (10‐250 m) structures.Journal of Environmental & Engineering Geophysics5, 39–56.
    [Google Scholar]
  58. Vangkilde‐PedersenT., RasmussenE.S. and KristensenM.2012. Detailed mapping of Miocene sand‐rich deposits in Denmark with high resolution 2D landstreamer vibroseis.First Break30, 45–50.
    [Google Scholar]
  59. WangS., MalehmirA. and BastaniM.2016. Geophysical characterization of areas prone to quick‐clay landslides using radio‐magnetotelluric and seismic methods.Tectonophysics677–678, 248–260.
    [Google Scholar]
  60. YordkayhunS., TryggvasonA., NordenB., JuhlinC. and BergmanB.2009. 3D seismic traveltime tomography imaging of the shallow subsurface at the CO2SINK project site, Ketzin, Germany.Geophysics74, G1–G15.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017011
Loading
/content/journals/10.3997/1873-0604.2017011
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error