1887
Volume 15 Number 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In the near surface with unconsolidated soils, shear‐wave properties can often be characterised better and with a higher resolution than compressional‐wave properties. To enable imaging ahead of a tunnel‐boring machine, we developed a seismic prediction system with a few shear‐wave vibrators and horizontal receivers. The boring process is interrupted at regular intervals to carry out active surveys. The vibrators are then pushed against the rock or soil in front of the cutting wheel of the machine. The design of the vibrators is based on linear synchronous motor technology that can generate very low frequencies, starting at 5 Hz. These vibrators generate a force in a direction perpendicular to the tunnel axis. Horizontal receivers measure the particle velocity, mainly due to the horizontally polarised shear waves. Because imaging with conventional migration methods suffers from artefacts, caused by the incomplete aperture and inaccuracies in the assumed velocity model, we use two‐dimensional horizontally polarised shear full‐waveform inversion to resolve the subsurface shear properties. The classic cycle‐skipping problem, which can make the application of full‐waveform inversion cumbersome, is avoided by the capacity of the vibrators to generate low frequencies. In this paper, we demonstrate the capabilities of the proposed seismic system through a number of synthetic and field experiments.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017014
2017-03-01
2024-04-23
Loading full text...

Full text loading...

References

  1. AshidaY.2001. Seismic imaging ahead of a tunnel face with three‐component geophones.International Journal of Rock Mechanics and Mining Sciences38(6), 823–831.
    [Google Scholar]
  2. BellinoA., GaribaldiL. and GodioA.2013. An automatic method for data processing of seismic data in tunneling.Journal of Applied Geophysics98, 243–253.
    [Google Scholar]
  3. BharadwajP., MulderW.A., DrijkoningenG.G. and ReijnenR.2015. Looking ahead of a tunnel boring machine with 2‐D SH full waveform inversion.77th EAGE Conference and Exhibition, Madrid, Spain, June 2015.
    [Google Scholar]
  4. BharadwajP., MulderW. and DrijkoningenG.2016. Full waveform inversion with an auxiliary bump functional.Geophysical Journal International206(2), 1076–1092.
    [Google Scholar]
  5. BohlenT., LorangU., RabbelW., MüllerC., GieseR., LüthS. et al. 2007. Rayleigh‐to‐shear wave conversion at the tunnel face: from 3D‐FD modeling to ahead‐of‐drill exploration.Geophysics72(6), T67–T79.
    [Google Scholar]
  6. BoonyasiriwatC., ValasekP., RouthP., CaoW., SchusterG.T. and MacyB.2009. An efficient multiscale method for time‐domain waveform tomography.Geophysics74(6), WCC59–WCC68.
    [Google Scholar]
  7. BozdağE., TrampertJ. and TrompJ.2011. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements.Geophysical Journal International185(2), 845–870.
    [Google Scholar]
  8. BretaudeauF., BrossierR., LeparouxD., AbrahamO. and VirieuxJ.2013. 2D elastic full‐waveform imaging of the near‐surface: application to synthetic and physical modelling data sets.Near Surface Geophysics11(3), 307–316.
    [Google Scholar]
  9. BrossierR., OpertoS. and VirieuxJ.2009. Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion.Geophysics74(6), WCC105–WCC118.
    [Google Scholar]
  10. BunksC., SaleckF.M., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform inversion.Geophysics60(5), 1457–1473.
    [Google Scholar]
  11. FichtnerA.2010. Full Seismic Waveform Modelling and Inversion. Springer.
    [Google Scholar]
  12. GhoseR., NijhofV., BrouwerJ., MatsubaraY., KaidaY. and TakahashiT.1998. Shallow to very shallow, high‐resolution reflection seismic using a portable vibrator system.Geophysics63(4), 1295–1309.
    [Google Scholar]
  13. GuyE.D., Nolen‐HoeksemaR.C., DanielsJ.J. and LefchikT.2003. High‐resolution SH‐wave seismic reflection investigations near a coal mine‐related roadway collapse feature.Journal of Applied Geophysics54(1), 51–70.
    [Google Scholar]
  14. HainesS.S. and EllefsenK.J.2010. Shear‐wave seismic reflection studies of unconsolidated sediments in the near surface.Geophysics75(2), B59–B66.
    [Google Scholar]
  15. HarmankayaU., KaslilarA., WapenaarK. and DraganovD.2016. Locating scatterers ahead of a tunnel boring machine using noise correlation.78th EAGE Conference and Exhibition, Vienna, Austria, May–June 2016.
    [Google Scholar]
  16. HauserE.C.2001. Detection and location of obstructions ahead of a tunnel boring machine using the tunneling vibrations as a seismic source: the first successful example.2001 Symposium on Application of Geophysics to Environmental and Engineering Problems (SAGEEP).
    [Google Scholar]
  17. HelbigK. and MesdagC.S.1982. The potential of shear‐wave observations.Geophysical Prospecting30(4), 413–431.
    [Google Scholar]
  18. JetschnyS.2010. Seismic prediction and imaging of geological structures ahead of a tunnel using surface waves. PhD thesis, Karlsruhe Institute of Technology, Germany.
    [Google Scholar]
  19. KneibG., KasselA. and LorenzK.2000. Automatic seismic prediction ahead of the tunnel boring machine.First Break18(7).
    [Google Scholar]
  20. KuvshinovB.N. and MulderW.A.2006. The exact solution of the time‐harmonic wave equation for a linear velocity profile.Geophysical Journal International167(2), 659–662.
    [Google Scholar]
  21. LiY.E. and DemanetL.2016. Full‐waveform inversion with extrapolated low‐frequency data.Geophysics81(6), R339–R348.
    [Google Scholar]
  22. LuoY., XiaJ., XuY., ZengC. and LiuJ.2010. Finite‐difference modeling and dispersion analysis of high‐frequency Love waves for near‐surface applications.Pure and Applied Geophysics167(12), 1525–1536.
    [Google Scholar]
  23. MaurerH., GreenhalghS.A., ManukyanE., MarelliS. and GreenA.G.2012. Receiver‐coupling effects in seismic waveform inversions.Geophysics77(1), R57–R63.
    [Google Scholar]
  24. MillerR.D., XiaJ. and ParkC.B.2001. Love waves: a menace to shallow shear wave reflection surveying.71st SEG annual meeting, Expanded Abstracts, 1377–1380.
    [Google Scholar]
  25. MulderW.A. and PlessixR.‐E.2008. Exploring some issues in acoustic full waveform inversion.Geophysical Prospecting56(6), 827–841.
    [Google Scholar]
  26. MusayevK., HacklK. and BaitschM.2013. Frequency domain waveform inversion in a tunnel environment.Proceedings of Applied Mathematics and Mechanics13(1), 323–324.
    [Google Scholar]
  27. NemethT., WuC. and SchusterG.T.1999. Least‐squares migration of incomplete reflection data.Geophysics64(1), 208–221.
    [Google Scholar]
  28. NoorlandtR., DrijkoningenG., DamsJ. and JenneskensR.2015. A seismic vertical vibrator driven by linear synchronous motors.Geophysics80(2), EN57–EN67.
    [Google Scholar]
  29. OmnesG.1978. Exploring with SH‐waves.Canadian Journal of Exploration Geophysics14, 40–49.
    [Google Scholar]
  30. PetronioL. and PolettoF.2002. Seismic‐while‐drilling by using tunnel boring machine noise.Geophysics67(6), 1798–1809.
    [Google Scholar]
  31. PolettoF. and PetronioL.2006. Seismic interferometry with a TBM source of transmitted and reflected waves.Geophysics71(4), SI85–SI93.
    [Google Scholar]
  32. PrattR.G., ShinC. and HicksG.J.1998. Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion.Geophysical Journal International133(2), 341–362.
    [Google Scholar]
  33. SteeplesD.W. and MillerR.D.1998. Avoiding pitfalls in shallow seismic reflection surveys.Geophysics63(4), 1213–1224.
    [Google Scholar]
  34. StümpelH., KählerS., MeissnerR. and MilkereitB.1984. The use of seismic shear waves and compressional waves for lithological problems of shallow sediments.Geophysical Prospecting32(4), 662–675.
    [Google Scholar]
  35. SwinnenG., ThorbeckeJ.W. and DrijkoningenG.G.2007. Seismic imaging from a TBM.Rock Mechanics and Rock Engineering40(6), 577–590.
    [Google Scholar]
  36. TarantolaA.1984. Inversion of seismic reflection data in the acoustic approximation.Geophysics49(8), 1259–1266.
    [Google Scholar]
  37. TarantolaA.1986. Strategy for nonlinear elastic inversion of seismic reflection data.Geophysics51, 1893–1903.
    [Google Scholar]
  38. TzavarasJ.2010. 3D tunnel seismic imaging. PhD thesis, Freie UniversitätBerlin, Germany.
    [Google Scholar]
  39. van LeeuwenT. and MulderW.A.2010. A correlation‐based misfit criterion for wave‐equation traveltime tomography.Geophysical Journal International182(3), 1383–1394.
    [Google Scholar]
  40. VirieuxJ.1984. SH‐wave propagation in heterogeneous media: velocity‐stress finite‐difference method.Geophysics49(11), 1933–1942.
    [Google Scholar]
  41. VirieuxJ. and OpertoS.2009. An overview of full‐waveform inversion in exploration geophysics.Geophysics74(6), WCC1–WCC26.
    [Google Scholar]
  42. WapenaarC.P.A., VerschuurD.J. and HerrmannP.1992. Amplitude preprocessing of single and multicomponent seismic data.Geophysics57(9), 1178–1188.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017014
Loading
/content/journals/10.3997/1873-0604.2017014
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error