Quick Links


An accurate and efficient finite-difference operator for the frequency-domain wave propagationGold Open Access

Authors: Junich Takekawai and Hitoshi Mikada
Event name: The 21st International Symposium on Recent Advances in Exploration Geophysics (RAEG 2017)
Session: Geoexploration
Publication date: 20 May 2017
DOI: 10.3997/2352-8265.20140223
Organisations: KUGS
Language: English
Info: Extended abstract, PDF ( 1.7Mb )

We newly developed a finite-difference (FD) operator for the frequency-domain acoustic wave propagation. This operator uses a stretched stencil to avoid the numerical anisotropy. In general, direct solvers for sparse matrices are used in exploration geophysical community because they have advantage over iterative ones, i.e. multi-source configuration can be simply implemented. In the frequency-domain modling, the computational costs (calculation time and computational memory) depend on not only the number of neighbors but also the bandwidth of the impedance matrix. So usage of higher-order scheme is not always conducive to the improvement of the computational costs. In the present study, we use a stretched stencil of FD operator not to increase the bandwidth in the impedance matrix. Coefficients of the stencil are determined by a minimization process. We investigate the accuracy of our new scheme using dispersion analysis and numerical experiment. They show that the proposed scheme can improve not only accuracy but also efficiency compared to the conventional 9-point scheme.

Back to the article list