1887

Abstract

Summary

his is the case study of GPR profiling of permafrost basement layer in Lorino village (Chukotka, Russia). The structure of shallow layers of permafrost was studied. Modeling of spatiotemporal dynamics of cryogenic processes allowed recognition of three stages of natural and human-induced permafrost degradation. It was used as a baselayer for the village differentiation following the potential hazardous cryogenic processes.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201700389
2017-04-25
2024-03-29
Loading full text...

Full text loading...

References

  1. ИвановВ.Ф.
    Четвертичные отложения побережья Восточной Чукотки - Владивосток: ДВНЦ АН СССР, 1980. 140 с. [V. F. Ivanov Quaternary sediments of Eastern Chukotka coast - Vladivostok: FESC of the USSR, 1980. P.140]
    [Google Scholar]
  2. ШурЮ.Л.
    Верхний горизонт толщи мерзлых пород и термокарст - Новосибирск: «Наука» Сиб. отделение, 1988. 213 с. [Y. L. Shyr. The upper horizon of permafrost and thermokarst. - Novosibirsk: ―Science‖, 1988. P. 213]
    [Google Scholar]
  3. Bradford, J. H., McNamara, J. P., Bowden, W., & Gooseff, M. N.
    (2005). Measuring thaw depth beneath peat lined arctic streams using ground‐ penetrating radar. Hydrological Processes, 19(14), 2689–2699.
    [Google Scholar]
  4. Brosten, T. R., Bradford, J. H., McNamara, J. P., Gooseff, M. N., Zarnetske, J. P., Bowden, W. B., & Johnston, M. E.
    (2009). Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar. Journal of Hydrology, 373(3), 479–486.
    [Google Scholar]
  5. De Pascale, G. P., W. H.Pollard, and K. K.Williams
    Geophysical mapping of ground ice using a combination of capacitive coupled resistivity and ground-penetrating radar, Northwest Territories, Canada / Journal of Geophysical Research, Vol. 113 (2008), F02S90, P. 1–15.
    [Google Scholar]
  6. DucharmeM.-A., AllardM.A., ‘HéraultE.L
    Organic matter, ice content and structure tomography scanning, Saluit, Nunavik, Canada. Published Online 2012http://fallmeeting.agu.org/2012/files/2012/12/Affiche_AGU_2.pdf
    [Google Scholar]
  7. Ermakov, A. P., & Starovoitov, A. V.
    (2010). The use of the Ground Penetrating Radar (GPR) method in engineering-geological studies for the assessment of geological-cryological conditions. Moscow University Geology Bulletin, 65(6), 422–427.
    [Google Scholar]
  8. GuoZh., DongH., XiaoJ.
    Detection of Permafrost Subgrade Using GPR: A Case Examination on Qinghai-Tibet Plateau /Journal of Geoscience and Environment Protection, 2015, № 3, p. 35–47. Published Online July 2015 in SciRes. http://www.scirp.org/journal/gephttp://dx.doi.org/10.4236/gep.2015.35005
    [Google Scholar]
  9. Hinkel K. M., Doolittle2 J. A., Bockheim J. G., Nelson F. E., PaetzoldR., KimbleJ. M. and TravisR.
    Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska / Permafrost and Periglacial Processes (2001) Vol. 12, Issue 2. P. 179–190
    [Google Scholar]
  10. HorvathC.L.
    An Evaluation of Ground Penetrating Radar for Investigation of Palsa Evaluation, Macmillan Pass, NWT, Canada // The 7 International Permafrost Conference, Yellowknife (Canada), Collection Nordicana, № 55, 1998. P. 473–478
    [Google Scholar]
  11. Hu, Z., & Shan, W.
    Landslide investigations in the northwest section of the lesser Khingan range in China using combined HDR and GPR methods (2015). Bulletin of Engineering Geology and the Environment, 1–13.
    [Google Scholar]
  12. Judge A.S., Tucker C.M., PilonJ.A. and MoormanB.J.
    Remote Sensing of Permafrost by Ground- Penetrating Radar at Two Airports in Arctic Canada / Arctic vol. 44, supp. 1 (1991) P. 4–48
    [Google Scholar]
  13. Kneisel, C., Hauck, C., Fortier, R., & Moorman, B.
    (2008). Advances in geophysical methods for permafrost investigations. Permafrost and Periglacial Processes, 19(2), 157–178.
    [Google Scholar]
  14. Kraev G.N., Maslakov A.A., GrebenetsV.I., KalyantoN.L.
    (2011). Engineering permafrost problems of the Eastern Chukotka areas of indigenous people’s settlements. Engineering Geology, 3, 52–57 (in Russian).
    [Google Scholar]
  15. MunroeJ. S., DoolittleJ. A., KanevskiyM. Z., HinkelK. M., NelsonF. E.
    Application of Ground- Penetrating Radar Imagery for Three-Dimensional Visualisation of Near-Surface Structures in Ice-Rich Permafrost, Barrow, Alaska / Permafrost and Periglac. Process. (2007) DOI: 10.1002/ppp.594
    https://doi.org/10.1002 [Google Scholar]
  16. SchwambornG., WagnerD. and HubbertenH.-W.
    The use of GPR to detect active layers in young periglacial terrain of Livingston Island, Maritime Antarctica / Near Surface Geophysics, 2008. P. 331–336
    [Google Scholar]
  17. Shur, Y., Hinkel, K. M., & Nelson, F. E.
    (2005). The transient layer: implications for geocryology and climate‐ change science. Permafrost and Periglacial Processes, 16(1), 5–17.
    [Google Scholar]
  18. SjöbergY., MarklundP. , PetterssonR. and LyonS. W.
    Geophysical mapping of palsa peatland permafrost / The Cryosphere, 9, 2015. P. 465–478
    [Google Scholar]
  19. TregubovO.D.
    Experience in Using GPR to Study New Frozen-Ground Formations in Subgrade Structures / Soil Mechanics and Foundation Engineering, 2015. P. 286–291
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201700389
Loading
/content/papers/10.3997/2214-4609.201700389
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error