1887

Abstract

Summary

Currently, the problem of interpretation of microseismic monitoring data is a critical task. Along with the improvement of field survey technologies and data processing, as well as with the development of real-time hydraulic fracturing monitoring by microseismic methods there are several problems to solve, such as objectivity of geological data, the data reference with the local and regional stress-strain state of the rock massif. The aim of this work is the post-processing of surface microseismic monitoring results with the use of geographic information systems. An analytical basis of data processing is spatial statistics set of tools of ArcGIS ESRI software, which is traditionally used to identify the patterns in the spatial distribution of any point events containing georeference component. The paper shows an approach to process an interpretation in complex situations, such as fracking pump failure, when the cloud of microseismic events shows a random distribution. Main attention in the work was paid for geological interpretation of the results obtained and their relation with the results of regional stress-strain state investigation. Significant convergence is detected for the orientation of natural fractures defined by surface seismic surveys, microseismic monitoring of hydraulic fracture propagation and regional lineament analysis basing on satellite images.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201700470
2017-05-15
2024-03-28
Loading full text...

Full text loading...

References

  1. AleksandrovS., MishinV.A., Burov, D.
    [2014] Microseismic Monitoring & Fracking: Downhole or Surface?Oil&GasEURASIA, 3, 22–26.
    [Google Scholar]
  2. Duncan, P.M. and Eisner, L.
    [2010] Reservoir characterization using surface microseismic monitoring. Geophysics, 75(5), 139–146, DOI:10.1190/1.3467760.
    https://doi.org/10.1190/1.3467760 [Google Scholar]
  3. Ebdon, D.
    [1985]. Statistics in Geography: A Practical Approach – Revised with 17 Programs, 2nd Edition, Wiley-Blackwell, UK.
    [Google Scholar]
  4. EisnerL., DuncanP., HeiglW., KellerW.
    [2009] Uncertainties in passive seismic monitoring. The Leading Edge, 28(6), 648–655.
    [Google Scholar]
  5. Le Calvez, J.H., Klem, R.C., Bennett, L., Erwemi, A., Craven, M. and Palacio, J.C.
    [2007] Real-Time Microseismic Monitoring of Hydraulic Fracture Treatment: A Tool To Improve Completion and Reservoir Management. SPE Hydraulic Fracturing Technology Conference, College Station, Texas. Extended Abstract, SPE 106159.
    [Google Scholar]
  6. Mitchell, A.
    [2009]. The ESRI Guide to GIS Analysis. Volume 2: Spatial Measurments & Statistics. ESRI Press. Redland, California.
    [Google Scholar]
  7. Nugmanov, I. I. et al
    . [2015] Morphological characteristic of hydraulic fracturing according to the results of microseismic research. International Journal of Applied Engineering Research, 10(24), 45214–45223.
    [Google Scholar]
  8. Shapiro, S. A.
    [2015] Fluid-induced seismicity. University Printing House, Cambridge CB2 8BS, United Kingdom.
    [Google Scholar]
  9. Tobler, W. R.
    [1970] A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46. Supplement: Proceedings. International Geographical Union. Commission on Quantitative Methods, 234–240.
    [Google Scholar]
  10. [2004] On the First Law of Geography: A Reply. Annals of the Association of American Geographers, 94(2), 304–310.
    [Google Scholar]
  11. van der Bann, M., Eaton, D., Dusseault, M.
    [2013] Microseismic Monitoring Developments in Hydraulic Fracture Stimulation. Chapter 21. In: P.Bunger, A.P., McLennan, J and Jeffrey, R. (Eds.) Effective and Sustainable Hydraulic Fracturing – Proceedings. InTech, ISBN 978-953-51-1137-5, 1072 p., DOI: 10.5772/45724.
    https://doi.org/10.5772/45724 [Google Scholar]
  12. Wuestefeld, A.
    and Kendall, J-.Michael [2012] Interaction of Hydraulic and Natural Fracture Networks Inferred by Integrating Microseismic and Geomechanical Techniques. SEG Las Vegas 2012 Annual Meeting, Extended Abstracts, 1–5, DOI http://dx.doi.org/10.1190/segam2012-1577.1.
    [Google Scholar]
  13. YaskevichS.V., DuchkovA.A.
    [2013]. Comparison of accuracy of microseismic event location using surface and downhole acquisition systems. Seismic Technology, 10(3), 43–51.
    [Google Scholar]
  14. Гапеев, Д.Н., Ерохин, Г.Н., Родин, С.В., Седайкин, Р.Д., Смирнов, И.И.
    [2014] Новые возможности применения пассивного микросейсмического мониторинга для выявления структурно-тектонических особенностей участков нефтегазовых месторождений. Вестник Балтийского федерального университета им. И. Канта, 4, 113–120.
    [Google Scholar]
  15. СтефановЮ.П., ДучковА.А., БакеевР.А., ЯскевичС.В.
    [2014] Расчет излучения упругих волн при продвижении трещины гидроразрыва. Геодинамика. Геомеханика и геофизика. Материалы Четырнадцатого Всероссийского семинара, 31–32.
    [Google Scholar]
  16. Шабалин, Н.Я., Биряльцев, Е.В., Рыжов, В.А., Мокшин, Е.В., Феофилов, С.А., Шарапов, И.Р., Рыжов, Д.А.
    [2013] Мониторинг многостадийного ГРП с дневной поверхности. Теоретические подходы и практические результаты. Экспозиция Нефть Газ, 6(31), 40–43.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201700470
Loading
/content/papers/10.3997/2214-4609.201700470
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error