1887

Abstract

Summary

The integrated gravity modeling is a concept dedicated to delineate accurately the structural lineation and framework using the rock density heterogeneity principle. It’s based on qualitative and quantitative interpretations of gravity data.

Since the fault zone and diapirs are the main cause of the seismic quality degradation, especially in 2D seismic, using a specific gravity analysis workflow will enable the mapping of fault network (even sub-seismic scale faults) and tightening the structural model interpreted from the seismic.

Ultimately, integrating gravity interpretation (qualitative and quantitative), seismic and well data and surface geological data as input for gravity modelling, will help to constrain the basin architecture, and to map the deep structures (further than seismic investigation depth).

This tool have been used to identify subsurface anomalies which could be anything from horst-blocks to basaltic intrusions or diapirs, but also to mitigate the petroleum exploration risk related to trap definition and integrity in an under-explored area with limited data set.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201701080
2017-06-12
2024-04-26
Loading full text...

Full text loading...

References

  1. Bédir, M.
    , 1995. Mécanismes géodynamiques des bassins associés aux couloirs de décrochements de la marge atlasique de la Tunisie. Séismo-stratigraphie, Séismo-tectonique et implications pétrolières. Université de Tunis.
    [Google Scholar]
  2. Burollet, P.F.
    , 1956. Contribution à l’étude stratigraphique de la Tunisie centrale, Tunis.
    [Google Scholar]
  3. , 1981. The Pelagian Sea east of Tunisia: Bioclastic deposition under temperate climate. Marine Geology, 44(1–2), pp.157–170. Available at: http://linkinghub.elsevier.com/retrieve/pii/002532278190116X.
    [Google Scholar]
  4. Dhahri, F. & Boukadi, N.
    , 2010. The evolution of pre-existing structures during the tectonic inversion process of the Atlas chain of Tunisia. Journal of African Earth Sciences, 56(4–5), pp.139–149. Available at: http://dx.doi.org/10.1016/jjafrearsci.2009.07.002.
    [Google Scholar]
  5. Gabtni, H.
    , 2005. Gravity contribution for the study of the deep structures of the Tunisian Sahel domain (Kairouan-Sousse-Monastir area case). Comptes Rendus - Geoscience, 337(16), pp.1409–1414.
    [Google Scholar]
  6. Klett, T.R.
    , 2001. Total Petroleum Systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta—The Bou Dabbous- Tertiary and Jurassic-Cretaceous Composite. USGS bulletin, (2202-D), p.149. Available at: http://pubs.usgs.gov/bul/b2202-d/.
    [Google Scholar]
  7. De Lamotte, D.F. et al
    ., 2009. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics, 475(1), pp.9–28. Available at: http://dx.doi.org/10.1016/j.tecto.2008.10.024.
    [Google Scholar]
  8. Rabhi, M.
    , 1999. Contribution à l’étude stratigraphique et analyse de l’évolution géodynamique de l’axe Nord-Sud et des structures avoisinantes (Tunisie centrale). Faculté des Sciences de Tunis, Université de Tunis II.
    [Google Scholar]
  9. Turki, M.M.
    , 1985. Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. Faculté des sciences de Tunis.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201701080
Loading
/content/papers/10.3997/2214-4609.201701080
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error