Quick Links


Constant and Frequency-dependent Attenuation from Vertical Seismic Profiles in Fractured Granite and Thinly Layered SedimentNormal access

Authors: C.D. Cantú Bendeck, R.A. Clark, A.D. Booth and W. Wills
Event name: 79th EAGE Conference and Exhibition 2017
Session: Seismic Attenuation - Estimation and Compensation
Publication date: 12 June 2017
DOI: 10.3997/2214-4609.201701156
Organisations: EAGE
Language: English
Info: Extended abstract, PDF ( 2.22Mb )
Price: € 20

The seismic quality factor, Q, is generally treated as frequency-independent, yet theory and field evidence suggest it may not be. We measure constant-Q and frequency-dependent Q(f), from downgoing direct-P arrivals in VSP data, over a 1000 m-thick granite interval in Cornwall, SW England, and a 700 m-thick interbedded shale-carbonate sequence in the Barents Sea, and find two significant results. First, we obtain consistent constant-Q and Q(f) values, although Q(f) values vary smoothly, with frequency-specific ‘attenuation peaks’. In the granite, over 25-90Hz, constant-Q=75±47, and Q(f)≈35-100. For the sediments, over 15-110Hz, constant-Q=152±40, and Q(f)≈70-200. We conclude that our Q(f) workflow (using logarithmic decrement of individual frequencies’ amplitudes after geometric spreading corrections, so not imposing an analytic Q(f) form) is workable. Second, attenuation in this granite is comparably high to that in these sediments. The granite has only naturally-occurring fractures, but they appear sufficient to increase attenuation above an intuitively-expected level. Well-log-based predictions of 1-D scattering contributions to attenuation, for both datasets, could clarify the origins of our measured Q(f). Overall, we urge that more Q(f) measurements are made, to support of studies of subsurface petrophysical properties and application of signal-processing tools that account for attenuation in seismic imaging.

Back to the article list