1887
Volume 15 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Interpretations of commercial marine shallow seismic data are generally limited to a prognosis of lithologies based on sparse ground truth data and regional stratigraphic models and a probability assessment of encountering perceived geohazards. However, an approach based on analyses of available petrophysical data can provide a more robust assessment of shallow marine lithologies and a more confident interpretation of shallow gas and overpressured formations. Generation of well‐ and borehole‐log acoustic impedance curves provides the starting point for these investigations and, although not all of the requisite data may be present in shallow section wireline suites, the Faust and Gardner equations, and other empirically derived relationships, can supply acceptable mathematical approximations. Impedance inversions of reflection seismic data facilitate more confident interpretations of lithological units, especially when combined with additional datasets such as gamma‐ray, resistivity, porosity, and S‐wave sonic, as elastic and extended elastic inversions. Anomalous seismic events interpreted to represent a probability of encountering shallow gas using traditional interpretation methods may be further investigated using amplitude‐versus‐offset cross‐plotting techniques, including fluid factor calculations, and the potential for overpressured gas accumulations or flow sands may be estimated from velocity‐derived pore pressure calculations. Geological and synthetic seismic modelling exercises provide the opportunity to test petrophysical interpretations in the absence of ground truth control data.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017031
2017-06-01
2024-04-18
Loading full text...

Full text loading...

References

  1. AdcockS.1993. In search of the well‐tie: what if I don’t have a sonic log?The Leading Edge12, 1161–1164.
    [Google Scholar]
  2. AkiK. and RichardsP.G.1980. Quantitative Seismology: Theory and Methods.San Francisco, CA: W.H. Freeman and Co.
    [Google Scholar]
  3. AleardiM., TognarelliA. and MazzottiA.2016. Characterisation of shallow marine sediments using high‐resolution velocity analysis and genetic‐algorithm‐driven 1D elastic full‐waveform inversion.Near Surface Geophysics14, 449–460.
    [Google Scholar]
  4. AllanP., ArthurJ., BarwiseA., CarringtonT., CookM., HobbsR. et al. (eds) 2012. Offshore Site Investigation and Geotechnics: Integrated Geotechnologies – Present and Future. Proceedings of the International Conference, London, UK.Society for Underwater Technology.
    [Google Scholar]
  5. ArdusD.A. (ed). 1980. Offshore Site Investigation. London, UK: Graham and Trotman.
    [Google Scholar]
  6. ArdusD.A. and GreenC.D. (eds). 1990. Safety in Offshore Drilling: The Role of Shallow Gas Surveys. Advances in Underwater Technology, Ocean Science and Offshore Engineering. Dordrecht, The Netherlands: Kluwer.
    [Google Scholar]
  7. ArthurJ., LongD., VannesteM. and WardellN.2012. Foreword.Near Surface Geophysics10, 263–265.
    [Google Scholar]
  8. AvsethP., MukerjiT. and MavkoG.2010. Quantitative Seismic Interpretation. Cambridge University Press.
    [Google Scholar]
  9. AyresA. and TheilenF.1999. Relationship between P‐ and S‐wave velocities and geological properties of near‐surface sediments of the continental slope of the Barents Sea.Geophysical Prospecting.
    [Google Scholar]
  10. BaconM., SimmR. and RedshawT.2013. 3‐D Seismic Interpretation. Cambridge University Press.
    [Google Scholar]
  11. BeydounW., KerdraonY., LefeuvreF., BancelinJ.P., MedinaS. and BleinesB.2002. Benefits of a 3DHR survey for Girassol Field appraisal and development, Angola.The Leading Edge21, 1152–1155.
    [Google Scholar]
  12. BohlenT., KuglerS., KleinG. and TheilenF.2004. 1.5D inversion of lateral variation of Scholte⊠wave dispersion.Geophysics69, 330–344.
    [Google Scholar]
  13. BoneM.R., GilesB.F. and TeglandE.R.1976. 3‐D high resolution data collection, processing and display.Proceedings of the 46th Annual SEG Meeting, Houston, USA.
    [Google Scholar]
  14. BoschM., MuckerjiT. and GonzalezE.F.2010. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review.Geophysics75, 165–176.
    [Google Scholar]
  15. BuckleyF.A.2016. A glaciogenic sequence from the Early Pleistocene of the Central North Sea.Journal of Quaternary Science.
    [Google Scholar]
  16. BuckleyF.A. and CotteeL. In press. Can we drill there?—Rig site surveys, geohazards and top‐hole drilling risks. In: Operations Geology: a Specialist Discipline in Petroleum Geology. Geological Society of London Special Publications.
    [Google Scholar]
  17. CampbellK.1999. Deepwater geohazards: how significant are they?The Leading Edge18, 514–519.
    [Google Scholar]
  18. CastagnaJ.P., BatzleM.L. and EastwoodR.L.1985. Relationships between compressional‐wave and shear‐wave velocities in clastic silicate rocks.Geophysics50, 571–581.
    [Google Scholar]
  19. CastagnaJ.P. and SwanH.W.1997. Principles of AVO cross‐plotting.The Leading Edge16, 948–956.
    [Google Scholar]
  20. CatuneanuO.2013. Principles of Sequence Stratigraphy. Elsevier: Oxford, UK.
    [Google Scholar]
  21. ConnollyP.1999. Elastic impedance.The Leading Edge18, 438–452.
    [Google Scholar]
  22. CookM., HampsonK., HobbsR., JackmanS., JardineR., LongD. et al. (eds). 2002. Offshore Site Investigation and Geotechnics: Diversity and Sustainability.Proceedings of the 5th International Conference, London, UK. Society for Underwater Technology.
    [Google Scholar]
  23. CowlardA.P.1996. Drill site geohazard identification facilitated by rework of suitable existing 3D seismic data volumes.Offshore Technology Conference, Houston, TX.
    [Google Scholar]
  24. DaiJ., SnyderF. and DuttaN. (2002). Detection and estimation of gas hydrates using rock physics and seismic inversion: examples from the northern deepwater Gulf of Mexico.The Leading Edge23, 60–66.
    [Google Scholar]
  25. DaviesR.J., PosamentierH.W., WoodL.J. and CartwrightJ.A. (eds). 2007. Seismic Geomorphology: Applications to Hydrocarbon Exploration and Production.Geological Society of London Special Publications277.
    [Google Scholar]
  26. DayK. and GaleJ.2007. North Falkland Basin geohazard study. In: Offshore Site Investigation and Geotechnics: Confronting New Challenges and Sharing Information. Proceedings of the 6th International Conference, London, UK, pp. 21–32.
    [Google Scholar]
  27. DigbyA.2002. Wireline logging for deepwater geohazard. In: Offshore Site Investigation and Geotechnics: Diversity and Sustainability (eds M.Cook , K.Hampson , R.Hobbs , S.Jackman , R.Jardine , D.Long et al.). Proceedings of the 5th International Conference, London, UK, pp. 391–404.
    [Google Scholar]
  28. DigbyA.2012. Wireline logging for deepwater geohazard assessment –the last ten years and the next ten. In: Offshore Site Investigation and Geotechnics: Integrated Geotechnologies – Present and Future (eds P.Allan , J.Arthur , A.Barwise , T.Carrington , M.Cook , R.Hobbs et al.). Proceedings of the 7th International Conference, London, UK, pp. 171–178.
    [Google Scholar]
  29. DobrinM.B. and SavitC.H.1988. Geophysical Prospecting. New York, NY: McGraw‐Hill.
    [Google Scholar]
  30. DomenicoS.N.1974. Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale.Geophysics39, 759–769.
    [Google Scholar]
  31. DomenicoS.N.1976. Effect of brine‐gas mixture on velocity in an unconsolidated sand reservoir.Geophysics41, 882–894.
    [Google Scholar]
  32. DrijkoningenG., el AlloucheN., ThorbeckeJ. and BadaG.2012. Nongeometrically converted shear waves in marine streamer data.Geophysics77, 45–56.
    [Google Scholar]
  33. DubruleO.2003. Geostatistics for Seismic Data Integration in Earth Models. Houten, The Netherlands: European Association of Geoscientists and Engineers.
    [Google Scholar]
  34. DvorkinJ., GutierrezM.A. and GranaD.2014. Seismic Reflections of Rock Properties. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  35. EatonB.A.1975. The equation for GeoPressure prediction from well logs.SPE 50th Annual Fall Meeting Proceedings, SPE 5544.
    [Google Scholar]
  36. FattiJ.L., SmithG.C., VailP.J., StraussP.J. and LevittP.R.1994. Detection of gas in sandstone reservoirs using AVO analysis and the Geostack technique.Geophysics59, 1362–1376.
    [Google Scholar]
  37. FaustL.Y.1951. A velocity function including lithologic variation.Geophysics18, 271–288.
    [Google Scholar]
  38. GamesK.P.1985. High resolution geophysical surveys for engineering purposes. In: Offshore Site Investigation, Vol. 3: Advances in Underwater Technology, Ocean Science and Offshore Engineering.London, UK: Graham and Trotman.
    [Google Scholar]
  39. GamesK.P.1988. Flexichoc FHC50 seismic source.First Break6, 254–260.
    [Google Scholar]
  40. GamesK.P.2012. Shallow gas detection—Why HRS, why 3D, why not HRS3D?First Break30, 67–75.
    [Google Scholar]
  41. GardnerG.H.F., GardnerL.W. and GregoryA.R.1974. Formation velocity and ρ—The diagnostic basics for stratigraphic traps.Geophysics39, 770–780.
    [Google Scholar]
  42. GassmannF.1951. Elastic waves through a packing of spheres.Geophysics16, 673–685.
    [Google Scholar]
  43. GeertsmaJ. and SmitD.C.1961. Some aspects of elastic wave propagation in fluid saturated porous solids.Geophysics26, 169–181.
    [Google Scholar]
  44. GerstoftP.1994. Inversion of geoacoustic data using genetic algorithms and a posteriori probability distributions.The Journal of the Acoustical Society of America 95, 770–782.
    [Google Scholar]
  45. GettrustJ.M. and RoweM.M.1990. Constraints on shear velocity in deep ocean sediment as determined from deep‐tow multi‐channel seismic data. In: Shear Waves in Marine Sediments (eds J.M.Hovem , M.D.Richardson and R.D.Stoll ). La Spezia, Italy: Springer.
    [Google Scholar]
  46. GreenbergM.L. and CastagnaJ.P.1992. Shear wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications.Geophysical Prospecting40, 159–209.
    [Google Scholar]
  47. HamiltonE.L. and BachmanR.T.1982. Sound velocity and related properties of marine sediments.The Journal of the Acoustical Society of America72, 1891–1904.
    [Google Scholar]
  48. HamiltonI.W., HartleyB., AnghuletaC. and DigbyA.2004. Turning high resolution geophysics upside down: application of seismic inversion to site investigation and geohazard problems.Proceedings of the Offshore Technology Conference, Houston, TX, OTC 16096.
    [Google Scholar]
  49. HardageR.A., RemingtonR. and RobertsH.H.2006. Gas hydrate—A source of shallow water flow?The Leading Edge25, 634–636.
    [Google Scholar]
  50. HegazyY.A. and MayneP.W.1995. Statistical correlations between Vs and CPT data for different soil types.Proceedings of the Symposium on Cone Penetration Testing (CPT’95), Vol. 2, Linköping, Sweden, pp. 173–178. Swedish Geotechnical Society.
    [Google Scholar]
  51. HegazyY.A. and MayneP.W.2006. A global statistical correlation between shear wave velocity and cone penetration data.Proceedings of the GeoShanghai, Site and Geomaterial Characterization Conference, Reston, VA, pp. 243–248. American Society of Civil Engineers.
    [Google Scholar]
  52. HolmesR.1977. Quaternary Deposits of the Central North Sea, 5. The Quaternary Geology of the UK Sector of the Central North Sea Between 56° and 58°N.Report of the Institute of Geological Sciences, 77/14.
    [Google Scholar]
  53. HustoftS., BünzS. and MienertJ.2010. Three‐dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid‐Norway.Basin Research22, 465–480.
    [Google Scholar]
  54. International Association of Oil and Gas Producers.2013. Guidelines for the Conduct of Offshore Drilling Hazard Site Surveys, Version 1.2, IOGP Report No. 373–18‐1.
    [Google Scholar]
  55. JeanjeanP., ZakeriA., Al‐KhafajiZ., HampsonK., ClukeyE. and LiedtkeE.2015. Geotechnics for wells top‐hole section and conductor. In: Frontiers in Offshore Geotechnics III (ed V.Meyer ), pp. 95–128. London, UK: CRC Press.
    [Google Scholar]
  56. JuddA. and HovlandM.2007. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge University Press.
    [Google Scholar]
  57. KerS., Le GonidecY., MarssetB., WestbrookG.K., GibertD. and MinshullT.A.2014. Fine‐scale gas distribution in marine sediments assessed from deep‐towed seismic data.Geophysical Journal International196, 1466–1470.
    [Google Scholar]
  58. KimD.Y.1964. Synthetic velocity log. 33rd international SEG meeting, New Orleans, USA.
    [Google Scholar]
  59. KittridgeM.G., BraunsdorfN.R. and BryndziaL.T.2008. Seismic Petrophysics—Integration to Enable Geologically‐Sensible Rock Physics: A Gulf of Mexico Demonstration.Society of Petrophysicists and Well‐Log Analysts 49th Annual Logging Symposium, Austin, TX, May 25–28, SPWLA‐2008‐RRR.
    [Google Scholar]
  60. KleynA.H.1983. Seismic Reflection Interpretation. New York, NY: Elsevier.
    [Google Scholar]
  61. KriefM., GaratJ., StellingwerffJ. and VentreJ.1990. A petrophysical interpretation using the velocities of P and S waves (full‐waveform sonic).The Log Analyst31, 355–369.
    [Google Scholar]
  62. KumarM.S., ChowdharyR.D., MishraD.N., RaoP.V., SrivastavR., NaiduN.N.B. et al. 2004. Short‐offset processing of 3D seismic data: a tool for study of sea floor and to identify shallow hazards—A case history.5th Conference and Exposition on Petroleum Geophysics, Hyderabad, India, pp. 194–198.
    [Google Scholar]
  63. LambeT.W. and WhitmanR.V.1969. Soil Mechanics. New York, NY: John Wiley and Sons.
    [Google Scholar]
  64. Landbø‐OpsethT., RibesenB.T., SyrstadB., HuseA., BolstadL. and SaasenA.2009. Curing shallow water flow in a North Sea exploration well exposed to shallow gas.SPE Offshore Europe Oil and Gas Conference, Aberdeen, UK, SPE 124607.
    [Google Scholar]
  65. LancasterR. and WhitcombeD.2000. Fast track “Coloured” inversion. 70th SEG annual meeting, Calgary, Canada, Expanded Abstracts,1572–1575.
    [Google Scholar]
  66. LeeE., ShippC., WillemH., GibsonJ.L. and DwanF.2010. Quantifying the probability of occurrence of shallow gas as a geohazard.AAPG Annual Convention and Exhibition, Search and Discover, 90104.
    [Google Scholar]
  67. LookB.2014. Handbook of Geotechnical Investigation and Design Tables. London, UK: Taylor and Francis.
    [Google Scholar]
  68. LucasA.L.1974. A high resolution marine seismic survey.Geophysical Prospecting22, 667–682.
    [Google Scholar]
  69. LunneT., PowellJ.J.M. and RobertsonP.K.1997. Cone Penetration Testing in Geotechnical Practice. Spon Press.
    [Google Scholar]
  70. MayneP.W., PeuchenJ. and BouwmeesterD.2010. Soil unit weight estimation from CPTs.2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA.
    [Google Scholar]
  71. McQuillinR., BaconM. and BarclayB.1984. An Introduction to Seismic Interpretation: Reflection Seismics in Petroleum Exploration. London, UK: Graham and Trotman.
    [Google Scholar]
  72. MitchellA. and GraulsD.1999. Overpressures in Petroleum Exploration, Elf EP editions. Pau, France.
    [Google Scholar]
  73. MorganE.C., VannesteM., LecomteI., BaiseL.G., LongvaO. and McAdooB.2012. Estimation of free gas saturation from seismic reflection surveys by the genetic algorithm inversion of a P‐wave attenuation model.Geophysics77, 185–187.
    [Google Scholar]
  74. NenovN., LundqvistD. and HayS.J.2011. Shallow geohazard interpretation from short‐offset deep water 3D seismic data in the Makassar Straits, Indonesia.Proceedings of the Indonesian Petroleum Association Thirty‐Fifth Annual Convention and Exhibition.
    [Google Scholar]
  75. OstermeierR.M., PelletierJ.H., WinkerC.D., NicholsonJ.W., RambowF.H. and CowanK.M.2000. Dealing with shallow water flow in the deepwater Gulf of Mexico.Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 11972.
    [Google Scholar]
  76. PandaS., LeBlancL.R. and SchockS.G.1994. Sediment classification based on impedance and attenuation estimation.The Journal of the Acoustical Society of America96, 3022–3035.
    [Google Scholar]
  77. PaolettiL., HegazyY., MonacoS. and PivaR.2010. Prediction of shear wave velocity for offshore sands using CPT data–Adriatic Sea.2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA.
    [Google Scholar]
  78. ParkinsonR.2001. High Resolution Site Surveys. London, UK: Spon Press.
    [Google Scholar]
  79. PetersenC.J., BünzS., HustoftS., MienertJ. and KlaeschenD.2010. High‐resolution P‐Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift.Marine and Petroleum Geology27, 1981–1994.
    [Google Scholar]
  80. PeuchenJ., AssenR.L. and de RuijterM.R.2002. Shear‐wave velocity integrated in offshore geotechnical practice. In: Offshore Site Investigation and Geotechnics: Diversity and Sustainability (eds M.Cook , K.Hampson , R.Hobbs , S.Jackman , R.Jardine , D.Long et al.). Proceedings of the International Conference, London, UK, pp. 379–390.
    [Google Scholar]
  81. PinsonL.J.W., HenstockT.J., DixJ.K. and BullJ.M.2008. Estimating quality factor and mean grain size of sediments from high‐resolution marine seismic data.Geophysics73, 19–28.
    [Google Scholar]
  82. PossamentierH.W., SummerhayesC.P., HaqB.U. and AllenG.P. (eds). 1993. Sequence Stratigraphy and Facies Associations. International Association of Sedimentologists, Special Publication No. 18.
    [Google Scholar]
  83. RichardsonM.D. and BriggsK.B.1996. In situ and laboratory geoacous‐tic measurements in soft mud and hard‐packed sand sediments: implications for high‐frequency acoustic propagation and scattering.Geo‐Marine Letters16, 196–203.
    [Google Scholar]
  84. RichardsonM.D. and BriggsK.B.2004. Empirical predictions of sea‐floor properties based on remotely measured sediment impedance.High Frequency Ocean Acoustics Conference, La Jolla, CA.
    [Google Scholar]
  85. RiderM. and KennedyM.2011. Rider‐French, Sutherland, Scotland.
    [Google Scholar]
  86. RiedelM. and TheilenF.2001. AVO investigations of shallow marine sediments.Geophysical Prospecting49, 198–212.
    [Google Scholar]
  87. RobertsonP.K., CampanellaR.G., GillespieD. and RiceA.1986. Seismic CPT to measure in situ shear wave velocity.Journal of Geotechnical Engineering112, 791–803.
    [Google Scholar]
  88. RobertsonP.K. and CabalK.L.2010. Estimating soil unit weight from CPT.2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA.
    [Google Scholar]
  89. RollinsF., WeilandR., HanleyK., ChowdhuryA. and HebertM.2010. Mississippi Canyon high resolution reprocessing: applications for shallow drilling hazard and geologic evaluation.SEG Technical Program Expanded Abstracts, 1448–1451.
    [Google Scholar]
  90. RoseP., ByerleyG., VaughanO., CaterJ. and RheaB.2016. Aviat: a lower Pleistocene shallow gas hazard developed as fuel gas supply for the Forties Field. In: Petroleum Geology of NW Europe: 50 Years of Learning ‐ Proceedings of the 8th Petroleum Geology Conference (eds B.Levell and M.Bowman ). Geological Society of London.
    [Google Scholar]
  91. RudmanA.J., WhaleyJ.F., BlakelyR.F. and BiggsM.E.1975. Transform of resistivity to pseudo‐velocity logs.AAPG Bulletin59, 1151–1165.
    [Google Scholar]
  92. RussellB.H.1988. Introduction to Seismic Inversion Methods. Course Notes, Series 2.Society of Exploration Geophysicists.
    [Google Scholar]
  93. RussellB.H. and HampsonD.1991. A comparison of post‐stack seismic inversion methods.SEG annual meeting.
    [Google Scholar]
  94. RutherfordS.R. and WilliamsR.H.1989. Amplitude versus offset variations in gas sands.Geophysics54, 680–688.
    [Google Scholar]
  95. Sainte‐AndreC., CauquilE.C. and PaternosterB.2011. Shallow hazard seismic cube: A decision pathway for the optimization of the processing sequence.Offshore Technology Conference, Houston, TX.
    [Google Scholar]
  96. SeongW. and ParkC.2001. The fine scale geo‐acoustic inversion of the shallow water sub‐bottom using chirp signals.
    [Google Scholar]
  97. ShueyR.T.1985. A simplification of the Zoeppritz equations.Geophysics50, 17–22.
    [Google Scholar]
  98. SimmR. and BaconS.2014. Seismic Amplitude.Cambridge University Press.
    [Google Scholar]
  99. SimmR. and WhiteR.2002. Tutorial: Phase, polarity and the interpreter’s wavelet.First Break20, 277–281.
    [Google Scholar]
  100. SmidtJ.M.2009. Table of elastic constants for isotropic media.The Leading Edge28, 116–117.
    [Google Scholar]
  101. SmithG.C. and GidlowP.M.1987. Weighted stacking for rock property estimation and detection of gas.Geophysical Prospecting35, 993–1014.
    [Google Scholar]
  102. SmithG.C. and SutherlandR.A.1996. The fluid factor as an AVO indicator.Geophysics61, 1425–1428.
    [Google Scholar]
  103. SoccoV.L., BoieroD., MaraschiniM., VannesteM., MadshusC., WesterdahlH. et al. 2011. On the use of the Norwegian Geotechnical Institute’s prototype seabed‐coupled shear wave vibrator for shallow soil characterization–II. Joint inversion of multimodal Love and Scholte surface waves.Geophysical Journal International185, 237–252.
    [Google Scholar]
  104. ThomasY., MarssetB., WestbrookG.K., GrallC., GéliL., HenryP. et al. 2012. Contribution of high resolution 3D seismic near‐seafloor imaging to reservoir‐scale studies: application to the active North Anatolian Fault, sea of Maramara.Near Surface Geophysics10, 291–301.
    [Google Scholar]
  105. TothZ., SpiessV. and KeilH.2015. Frequency dependence in seismoacoustic imaging of shallow gas due to gas bubble resonance.Journal of Geophysical Research: Solid Earth120, 8056–8072.
    [Google Scholar]
  106. TownsendA.R. and ArmstrongT.L.1990. Shallow gas detection using AVO processing of high resolution seismic data. In: Safety in Offshore Drilling: The Role of Shallow Gas Surveys, Vol. 25: Advances in Underwater Technology, Ocean Science and Engineering (eds D.A.Ardus and C.D.Green ), pp. 133–165. Dordrecht, The Netherlands: Kluwer.
    [Google Scholar]
  107. ToxopeusG., van BorselenR., BaardmanR.H., AuerL. and ØdegaardE.2011. Advanced geohazards assessment in shallow water through the estimation of primaries by sparse inversion.SEG annual meeting, San Antonio, TX, September 18–23.
    [Google Scholar]
  108. TrabantP.K.1984. Applied High‐Resolution Geophysical Methods: Offshore Geoengineering Hazards. Springer.
    [Google Scholar]
  109. VannesteM., MadshusC., SoccoL.V., MaraschiniM., SparrevikP.M., WesterdahlH. et al. 2011. On the use of the Norwegian Geotechnical Institute’s prototype seabed‐coupled shear wave vibrator for shallow soil characterization–I. Acquisition and processing of surface waves.Geophysical Journal International.
    [Google Scholar]
  110. VardyM.E.2015. Deriving shallow‐water sediment properties using post‐stack acoustic impedance inversion.Near Surface Geophysics13, 143–154.
    [Google Scholar]
  111. VardyM.E.2016. Remote characterisation of shallow marine sediments—Current status and future questions.Near Surface Geoscience 2016: Second Applied Shallow Marine Geophysics Conference, Mo ASM 05.
    [Google Scholar]
  112. VardyM.E., L’HeureuxJ.‐S., VannesteM., LongvaO., SteinerA., ForsbergC.F. et al. 2012. Multidisciplinary investigation of a shallow near‐shore landslide, Finneidfjord, Norway.Near Surface Geophysics10, 267–278.
    [Google Scholar]
  113. VirieuxJ. and OpertoS.2009. An overview of full‐waveform inversion in exploration geophysics.Geophysics74.
    [Google Scholar]
  114. WaltonG.G.1972. Three dimensional seismic method.Geophysics37, 417–430.
    [Google Scholar]
  115. WatersK.H.1978. Reflection Seismology. New York, NY: John Wiley and Sons.
    [Google Scholar]
  116. WhitcombeD.N., ConnollyP.A., ReaganR.L. and RedshawT.C.2002. Extended elastic impedance for fluid and lithology prediction.Geophysics67, 63–67.
    [Google Scholar]
  117. WhiteR. and SimmR.2003. Tutorial: good practice in well‐ties.First Break21, 75–83.
    [Google Scholar]
  118. WinsborrowG., HuwsD.G. and MuyzertE.2003. Acquisition and inversion of Love wave data to measure the lateral variability of geo‐acoustic properties of marine sediments.Journal of Applied Geophysics54, 71–84
    [Google Scholar]
  119. ZoeppritzK.1919. Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves.Gottinger Nachrichten1, 66–84.
    [Google Scholar]
  120. ZuccarinoL., MorandiD.A. and SottileM.2015. Shear‐wave velocity and shear modulus in marine clays. In: Frontiers in Offshore Geotechnics III (ed V.Meyer ), pp. 1151–1156. London, UK: Taylor and Francis.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017031
Loading
/content/journals/10.3997/1873-0604.2017031
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error