1887
Volume 29, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

During the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (. 125 Ma), to a magmatic arc provenance in the Cenomanian (. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12176
2016-02-10
2024-04-19
Loading full text...

Full text loading...

References

  1. Aguirre‐Urreta, M.B., Pazos, P.J., Lazo, D.G., Fanning, C.M. & Litvak, V.D. (2008) First U–Pb SHRIMP age of the Hauterivian stage, Neuquén Basin, Argentina. J. S. Am. Earth Sci., 26, 91–99.
    [Google Scholar]
  2. Arriagada, C., Cobbold, P.R. & Roperch, P. (2006) Salar de Atacama basin: a record of compressional tectonics in the central Andes since the mid‐Cretaceous. Tectonics, 25, TC1008 doi:10.1029/2004TC001770.
    [Google Scholar]
  3. Balgord, E.A. & Carrapa, B. (2014) Basin evolution of Upper Cretaceous‐Lower Cenozoic strata in the Malargue fold‐and‐thrust belt: northern Neuquen Basin, Argentina. Basin Res., doi:10.1111/bre.12106.
    [Google Scholar]
  4. Basei, M.A.S., Brito Neves, B.B., Varela, R., Teixeira, W.Jr, Siga, G., Sato, A.M. & Cingolani, C.A. (1999) Isotopic dating on the crystalline basement rocks of the Bariloche Region, Río Negro, Argentina. 2° Simposio sudamericano de geología isotópica (Carlos Paz), Servicio Geológico Minero Argentino. Anales, 34, 15–18.
    [Google Scholar]
  5. Basei, M.A., Varela, R., Passarelli, C.Jr, Siga, O., Cingolani, C., Sato, A. & Gonzalez, P. D. (2005) The crystalline basement in the north of Patagonia: isotopic ages and regional characteristics. In: Gondwana 12: Geological and Biological Heritage of Gondwana, Abstracts (Ed. by R.Pankhurst & G.Veiga ), pp. 61. Academia Nacional de Ciencias, Córdoba.
    [Google Scholar]
  6. van der Beek, P., Robert, X., Mugnier, J.L., Bernet, M., Huyghe, P. & Labrin, E. (2006) Late Miocene‐Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Res., 18, 413–434.
    [Google Scholar]
  7. Bernet, M., Zattin, M., Garver, J.I., Brandon, M.T. & Vance, J.A. (2001) Steady‐state exhumation of the European Alps. Geology, 29, 35–38.
    [Google Scholar]
  8. Bonaparte, J. F. (1996) Cretaceous tetrapods of Argentina. Miinchner Geowissenchaftliche Abhandlungen (A), 30, 73–130.
    [Google Scholar]
  9. Brandon, M.T. (2002) Decomposition of mixed grain age distributions using Binomfit. On Track, 24(8), 13–18.
    [Google Scholar]
  10. Brandon, M.T. & Vance, J.A. (1992) Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. Am. J. Sci., 292(8), 565–636.
    [Google Scholar]
  11. Carrapa, B. & DeCelles, P.G. (2008) Eocene exhumation and basin development in the Puna of northwestern Argentina. Tectonics, 27(1), 1–19.
    [Google Scholar]
  12. Carrapa, B., Wijbrans, J. & Bertotti, G. (2003) Episodic exhumation in the Western Alps. Geology, 31, 601–604.
    [Google Scholar]
  13. Carrapa, B., Strecker, M.R. & Sobel, E.R. (2006) Cenozoic orogenic growth in the Central Andes: evidence from sedimentary rock provenance and apatite fission track thermochronology in the Fiambalá Basin, southernmost Puna Plateau margin (NW Argentina). Earth Planet. Sci. Lett., 247(1), 82–100.
    [Google Scholar]
  14. Carrapa, B., DeCelles, P.G., Reiners, P. & Gerhels, G. (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syn‐tectonic detritus in the Central Andes: a multi‐phase tectono‐thermal history. Geology, 37, 407–410.
    [Google Scholar]
  15. Cawood, P.A., Hawkesworth, C.J. & Dhuime, B. (2012) Detrital zircon record and tectonic setting. Geology, 40, 875–878.
    [Google Scholar]
  16. Cazau, L.B. & Uliana, M.A. (1973) El Cretacico superior continental de la Cuenca Neuquina. V CongresoGeologicoArgentino. Actas, 3, 131–163.
    [Google Scholar]
  17. Cibin, U., Di Giulio, A. & Martelli, L. (2003) Oligocene‐Early Miocene evolution of the Northern Apennines (northwestern Italy) traced through provenance of piggy‐back basin fill successions. In: Tracing Tectonic Deformation Using the Sedimentary Record (Ed. by T.McCann & A.Saintot ) Geol. Soc. London Spec. Pub., 208, 269–287.
    [Google Scholar]
  18. Coutand, I., Carrapa, B., Deeken, A., Schmitt, A.K., Sobel, E.R. & Strecker, M.R. (2006) Propagation of orographic barriers along an active range front: insights from sandstone petrography and detrital apatite fission‐track thermochronology in the intramontane Angastaco basin, NW Argentina. Basin Res., 18(1), 1–26.
    [Google Scholar]
  19. Di Giulio, A., Ronchi, A., Sanfilippo, A., Tiepolo, M., Pimentel, M. & Ramos, V.A. (2012) Detrital zircon provenance from the Neuquén Basin (south‐central Andes): cretaceous geodynamic evolution and sedimentary response in a retroarc‐foreland basin. Geology, 40, 559–562.
    [Google Scholar]
  20. Dickinson, W.R. (1970) Interpeting detrital modes of graywackes and arkose. J. Sediment. Res., 40, 695–707.
    [Google Scholar]
  21. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. AAPG Bull., 63, 2164–2182.
    [Google Scholar]
  22. Dickinson, W.R., Beard, S.L., Brakendridge, R.G., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94, 222–235.
    [Google Scholar]
  23. Escayola, M.P., Pimentel, M. & Armstrong, R. (2007) Neoproterozoic backarc basin: sensitive high‐resolution ion microprobe U–Pb and Sm‐Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. Geology, 35, 495–498.
    [Google Scholar]
  24. Fildani, A. & Hessler, A.M. (2005) Stratigraphic record across a retroarc basin inversion: Rocas Verdes‐Magallanes Basin, Patagonian Andes, Chile. Geol. Soc. Am. Bull., 117(11), 1596–1614.
    [Google Scholar]
  25. Fosdick, J.C., Romans, B.W., Fildani, A., Bernhardt, A., Calderón, M. & Graham, S.A. (2011) Kinematic evolution of the Patagonian retroarc fold‐thrust belt and Magallanes foreland basin, Chile and Argentina. Geol. Soc. Am. Bull., 123, 1679–1698.
    [Google Scholar]
  26. Franzese, J.R. (1995) El Complejo Piedra Santa (Neuquén, Argentina): parte de un cinturón metamórfico neoplaeozoico del Gondwana suroccidental. Rev. Geol. Chile, 22(2), 193–202.
    [Google Scholar]
  27. Franzese, J. & Spalletti, L.A. (2001) Late Triassic‐Early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre‐break‐up rifting. J. S. Am. Earth Sci., 14, 257–270.
    [Google Scholar]
  28. Galbraith, R.F. & Green, P.F. (1990) Estimating the component ages in a finite mixture. Nucl. Tracks Radiat. Meas., 17(3), 197–206.
    [Google Scholar]
  29. Gallagher, K. (1998) Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci., 26, 519–572.
    [Google Scholar]
  30. Garrido, A.C. (2010) Stratigraphy of the Neuquén Group, upper cretaceous of the Neuquén Basin (Argentina): new proposal for lithostratigraphic ordaining. Rev. Mus. Argent. Cienc. Nat. Nueva Ser., 12(2), 121–177.
    [Google Scholar]
  31. Gehrels, G.E., Valencia, V. & Pullen, A. (2006) Detrital zircon geochronology by Laser‐Ablation Multicollector ICPMS at the Arizona LaserChron Center. In: Geochronology: Emerging Opportunities, Paleontology Society Short Course (Ed. by T.Loszewski & W.Huff ) Paleontol. Soc. Papers, 11, 10.
    [Google Scholar]
  32. Gehrels, G.E., Valencia, V. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochem. Geophys. Geosyst., 9, Q03017.
    [Google Scholar]
  33. Hugo, C.A. & Leanza, H.A. (2001) Hoja Geologica 3969‐IV, General Roca, provincias del Neuquén y Rıo Negro. Inst. Geol. Rec. Nat., SEGEMAR, Bol., 308, 1–71.
    [Google Scholar]
  34. Kay, S.M., Ramos, V.A., Mpodozis, C. & Sruoga, P. (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwanaland margin: analogy to the Middle Proterozoic in North America?Geology, 17, 324–328.
    [Google Scholar]
  35. Leanza, H.A. (2003) Las sedimentitas huitrinianas y rayosianas (Cretácico inferior) en el ámbito central y meridional de la cuenca Neuquina, Argentina. Servicio Geológico Minero Argentino, Serv. Geol. Min. Argentino, Contr. Tec‐Geol., 2, 1–31.
    [Google Scholar]
  36. Leanza, H.A. (2009) Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Rev. Mus. Argent. Cienc. Nat. Nueva Ser., 11(2), 145–184.
    [Google Scholar]
  37. Leanza, H.A. & Hugo, C.A. (1997) Hoja geologica 3969‐III‐Picun Leufù, Provincias del Neuquén y Rio Negro. Inst. Geol. Rec. Nat., SEGEMAR, Bol., 218, 1–235.
    [Google Scholar]
  38. Leanza, H.A., Apesteguıa, S., Novas, F.E. & de la Fuente, M.S. (2004) Cretaceous terrestrial beds from the Neuquén Basin (Argentina) and their tetrapod assemblages. Cretac. Res., 25, 61–87.
    [Google Scholar]
  39. Legarreta, L. & Uliana, M.A. (1998) Anatomy of hinterland depositional sequences: upper Cretaceous fluvial strata, Neuquén Basin, west‐central Argentina. In: Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks (Ed. by K.W.Shanley & P.J.McCabe ) SEPM Spec. Publ., 59, 83–92.
    [Google Scholar]
  40. Legarreta, L. & Uliana, M.A. (1999) El Jurasico y el Cretacico de la Cordillera Principal y la Cuenca Neuquina. In: Geologia Argentina, Instituto de Geologia y Recursos Minerales (Ed. by R. Caminos) Anales, 29(3), 399–416.
    [Google Scholar]
  41. Luth, S., Willingshofer, E., Sokoutis, D. & Cloething, S. (2010) Analogue modelling of continental collision: influence of plate coupling on mantle lithosphere subduction, crustal deformation and surface topography. Tectonophysics, 484, 87–102.
    [Google Scholar]
  42. Matteini, M., Junges, S.L., Dantas, E.L., Pimentel, M.M. & Bühn, B. (2010) In situ zircon U–Pb and Lu–Hf isotope systematic on magmatic rocks: insights on the crustal evolution of the proterozoic Goiás Magmatic Arc, Brasília belt, Central Brazil. Gondwana Res., 17(1), 1–12.
    [Google Scholar]
  43. Mortimer, E., Carrapa, B., Coutand, I., Schoenbohm, L., Sobel, E.R., Gomez, J.S. & Strecker, M.R. (2007) Fragmentation of a foreland basin in response to out‐of‐sequence basement uplifts and structural reactivation: El Cajón‐Campo del Arenal basin, NW Argentina. Geol. Soc. Am. Bull., 119(5–6), 637–653.
    [Google Scholar]
  44. Mosquera, A. & Ramos, V. (2006) Intraplate deformation in the Neuquén embayement. In: Evolution of an Andean Margin: A Tectonic and Magmatic View From the Andes to the Neuquén Basin (35°‐39° S lat.) (Ed. by S.M.Kay & V.Ramos ) Geol. Soc. Am., Spec. Paper, 407, 97–123.
    [Google Scholar]
  45. Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cobbold, P. & Reich, M. (2005) Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, northern Chile: implications for the tectonic evolution of the Central Andes. Tectonophysics, 399, 125–154.
    [Google Scholar]
  46. Pankhurst, R.J., Rapela, C.W., Fanning, C.M. & Márquez, M. (2006) Gondwanide continental collision and the origin of Patagonia. Earth‐Sci. Rev., 76, 235–257.
    [Google Scholar]
  47. Ramos, V.R. (1999) Plate tectonic setting of the Andean Cordillera. Episodes, 22, 183–190.
    [Google Scholar]
  48. Ramos, V.A. (2004) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res., 7(4), 1009–1026.
    [Google Scholar]
  49. Ramos, V.A. (2008) Patagonia: a Paleozoic continent adrift?J. S. Am. Earth Sci., 26, 235–251.
    [Google Scholar]
  50. Ramos, V.A. (2010a) The tectonic regime along the Andes: present settings as a key for the Mesozoic regimes. Geol. J., 45, 2–25.
    [Google Scholar]
  51. Ramos, V.A. (2010b) The Grenville‐age basement of the Andes. J. S. Am. Earth Sci., 29(1), 77–91.
    [Google Scholar]
  52. Ramos, V. A. & Folguera, A. (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics (Ed. by G.D.Veiga , L.A.Spalletti , J.A.Howell & E.Schwarz ) Geol. Soc. Lond. Spec. Publ., 252, 15–37.
    [Google Scholar]
  53. Ramos, V.A. & Kay, S.M. (2006) Evolution of the Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat). In: Overview on the Tectonic Evolution of the Southern Central Andes of Mendoza and Neuquén (35°‐39°S Latitude) (Ed. by S.M.Kay & V.A.Ramos ) Geol. Soc. Am. Spec. Paper, 407, 1–17.
    [Google Scholar]
  54. Ramos, V.R. (1981) Descripción geológica de la Hoja 33 c, Los Chihuidos Norte, provincia del Neuquén: carta geológico‐económica de la República Argentina, escala 1: 200.000. Serv. Geol. Nac., 182, 1–103.
    [Google Scholar]
  55. Ramos, V.A., Jordan, T.E., Allmendinger, R.W., Mpodozis, C., Kay, S.M., Cortés, J.M. & Palma, M.A. (1986) Paleozoic terranes of the Central Argentine Chilean Andes. Tectonics, 5(6), 855–880.
    [Google Scholar]
  56. Ramos, V.A., García Morabito, E., Hervé, F. & Fanning, M. (2010) Grenville‐age Sources in Cuesta de Rahue, Northern Patagonia: Constrains From U–Pb SHRIMP Ages From Detrital Zircons. 3° Simposio Geosur, Mar del Plata.
    [Google Scholar]
  57. Rocha‐Campos, A.C., Basei, M.A., Nutman, A.P., Kleiman Varela, L.E.R., Llambias, E., Canile, F.M. & de CR da Rosa, O. (2010) 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: SHRIMP U–Pb zircon geochronology evidence. Gondwana Res., doi:10.1016/j.gr.2010.07.003.
    [Google Scholar]
  58. Sánchez, M.L., Heredia, S. & Calvo, J.O. (2006) Paleoambientes sedimentarios del Cretacico Superior de la Formazion Plottier (Grupo Neuquén), Departamento Confluencia, Neuquén. Rev. Asoc. Geol. Argentina, 61, 3–18.
    [Google Scholar]
  59. Sánchez, M.L., Rossi, J., Morra, S. & Parmas, P. (2008) Análisis estratigráfico secuencial de las formaciones Huincul y Lisandro del Subgrupo Río Limay (Grupo Neuquén – Cretácico Tardío) en el Departamento El Cuy, Río Negro, Argentina. Lat. Am. J. Sedimentol. Basin Anál., 15(1), 1–26.
    [Google Scholar]
  60. Stephenson, R.A. & Cloething, S.A.P.L. (1991) Some examples and mechanical aspects of continental lithospheric folding. Tectonophysics, 188, 27–37.
    [Google Scholar]
  61. Thomson, S.N., Gehrels, G.E., Ruiz, J. & Buchwaldt, R. (2012) Routine low‐damage apatite U–Pb dating using laser ablation–multicollector–ICPMS. Geochem. Geophys. Geosyst., 13(2), 1–23.
    [Google Scholar]
  62. Tiepolo, M. (2003) In situ Pbgeochronology of zircons with laser ablation‐inductively coupled plasma‐sector field mass spectrometry. Chem. Geol., 199, 159–177.
    [Google Scholar]
  63. Tunik, M., Folguera, A., Naipauer, M., Pimentel, M. & Ramos, V.A. (2010) Early uplift and orogenic deformation in the Neuquén Basin: constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics, 489(1–4), 258–273.
    [Google Scholar]
  64. Uliana, M.A. & Biddle, K.T. (1988) Mesozoic‐Cenozoic paleogeographic and geodynamic evolution of southern South America. Rev. Bras. Geoc., 18, 172–190.
    [Google Scholar]
  65. Uliana, M.A., Dellapé, D.A. & Pando, G.A. (1975) Estratigrafía de las sedimentitas rayosianas. (Cretácico inferior de las provincias de Neuquén yMendoza). 2° Congreso Iberoamericano de Geología Económica. Actas, 1, 177–196 Buenos Aires.
    [Google Scholar]
  66. Vallati, P. (2002) Palynology of the Cerro Lisandro formation (lower “Dinosaurian Beds”), middle Cretaceous of the Neuquén Basin, west‐central Argentina. Neues Jahrb. Geol. Palaontol. Abh., 224(3), 411–428.
    [Google Scholar]
  67. Vallati, P. (2010) Asociaciones palinológicas con angiospermas en EL cretácico superior de la Cuenca Neuquina, Argentina. Rev. Bras. Paleontol., 13(2), 143–158.
    [Google Scholar]
  68. Vallati, P. (2013) Paleotropical pollen grains from the Neuquén Group, Patagonia, Argentina. Carnets Geol., L‐5, 273–279.
    [Google Scholar]
  69. Varela, R., Basei, M., Cingolani, C.A., Siga, O.Jr & Passarelli, C.R. (2005) El basamento cristalino de los Andes norpatagónicos en Argentina: geocronología e interpretación tectónica. Rev. Geol. Chile, 32(2), 167–187.
    [Google Scholar]
  70. Varela, A.N., Gomez‐Peral, L.E., Richiano, S. & PoiréD.G. (2013) Distinguishing similar volcanic source areas from an integrated provenance analysis: implications for foreland Andean basins. Jour. Sed. Res., 83, 258–276.
    [Google Scholar]
  71. Vermeesch, P. (2012) On the visualisation of detrital age distributions. Chem. Geol., 312–313, 190–194.
    [Google Scholar]
  72. Willner, A.P., Gerdes, A. & Massonne, H.J. (2008) History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29°‐36° S revealed by a U–Pb and Lu‐Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chem. Geol., 253, 114–129.
    [Google Scholar]
  73. Wilson, T. (1991) Transition from back‐arc to foreland basin development in the southernmost Andes: stratigraphic record from the Ultima Esperanza District, Chile. Geol. Soc. Am. Bull., 103, 98–111.
    [Google Scholar]
  74. Zavala, C. & Ponce, J.J. (2011) La Formation Rayoso (Cretacico Temprano) en la Cuenca Neuquina. XIII Congreso Geologico Argentino, Relatorio, 205–222.
  75. Zavala, C., Ponce, J.J., Arcuri, M., DrittantI, D., Freije, H. & Asensio, M. (2006) Ancient lacustrine hyperpycnites: a depositional model from a case study in the Rayoso Formation (Cretaceous) of west‐central Argentina. J. Sediment. Res., 76, 41–59.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12176
Loading
/content/journals/10.1111/bre.12176
Loading

Data & Media loading...

Supplements

Details of apatite fission track dating.

PDF

Details of apatite U–Pb dating.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error