1887
Volume 29, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia–Eurasia collision zone offer the unique possibility to study middle–late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long‐term evolution of the Iranian Plateau, including the regional spatio‐temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle–late Miocene crustal shortening and thickening processes led to the growth of a basement‐cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland‐basin (Great Pari Basin) to the east between 16.5 and 10.7 Ma. By 10.7 Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement‐cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle‐flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12180
2016-02-17
2024-04-20
Loading full text...

Full text loading...

References

  1. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B. & Wortel, R. (2011) Zagros orogeny: a subduction‐dominated process. Geol. Mag., 148, 689–691.
    [Google Scholar]
  2. Aghanabati, A. (1990) Geological map of Hashtrud quadrangle. Geological Survey of Iran, Tehran, scale 1:100,000.
  3. Alavi, M. & Amidi, M. (1976) Geological map of Takab quadrangle. Geological Survey of Iran, Tehran, scale 1:250,000.
  4. Allen, M.B., Jackson, J. & Walker, R. (2004) Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics, 23, TC2008.
    [Google Scholar]
  5. Allen, M.B., Kheirkhah, M., Emami, M.H. & Jones, S.J. (2011) Right‐lateral shear across Iran and kinematic change in the Arabia‐Eurasia collision zone. Geophys. J. Int., 184, 555–574.
    [Google Scholar]
  6. Allen, M.B., Saville, C., Blanc, E.J.‐P., Talebian, M. & Nissen, E. (2013) Orogenic plateau growth: expansion of the Turkish‐Iranian Plateau across the Zagros fold‐and‐thrust belt. Tectonics, 32, 171–190.
    [Google Scholar]
  7. Amidi, M. (1979) Geological map of Mianeh quadrangle. Geological Survey of Iran, Tehran, scale 1:250,000.
  8. Austermann, J. & Iaffaldano, G. (2013) The role of the Zagros orogeny in slowing down Arabia‐Eurasia convergence since ~5 Ma. Tectonics, 32, 351–363.
    [Google Scholar]
  9. Axen, G.J., Lam, P.J., Grove, M., Stockli, D.F. & Hassanzadeh, J. (2001) Exhumation of the west‐central Alborz mountains, Iran, Caspian subsidence, and collision‐related tectonics. Geology, 29, 559–562.
    [Google Scholar]
  10. Babakhani, A.R. & Ghalamghash, J. (1990) Geological map of Takht e Soleyman quadrangle. Geological Survey of Iran, Tehran, scale 1:100,000.
  11. Ballato, P. & Strecker, M.R. (2014) Assessing tectonic and climatic causal mechanisms in foreland‐basin stratal architecture: insights from the Alborz Mountains, northern Iran. Earth Surf. Proc. Land., 39, 110–125.
    [Google Scholar]
  12. Ballato, P., Nowaczyk, N.R., Landgraf, A., Strecker, M.R., Friedrich, A. & Tabatabaei, S.H. (2008) Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz mountains, northern Iran. Tectonics, 27, TC6001.
    [Google Scholar]
  13. Ballato, P., Mulch, A., Landgraf, A., Strecker, M.R., Dalconi, M.C., Friedrich, A. & Tabatabaei, S.H. (2010) Middle to Late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran. Earth Planet. Sci. Lett., 300, 125–138.
    [Google Scholar]
  14. Ballato, P., Uba, C.E., Landgraf, A., Strecker, M.R., Sudo, M., Stockli, D.F., Friedrich, A. & Tabatabaei, S.H. (2011) Arabia‐Eurasia continental collision: insights from late Tertiary foreland‐basin evolution in the Alborz mountains, northern Iran. Geol. Soc. Am. Bull., 123, 106–131.
    [Google Scholar]
  15. Ballato, P., Stockli, D.F., Ghassemi, M.R., Landgraf, A., Strecker, M.R., Hassanzadeh, J., Friedrich, A. & Tabatabei, S.H. (2013) Accommodation of transpressional strain in the Arabia‐Eurasia collision zone: new constraints from (U‐Th)/He thermochronology in the Alborz Mountains, N Iran. Tectonics, 32, 1–18.
    [Google Scholar]
  16. Ballato, P., Landgraf, A., Fox, M., Stockli, D., Schildgen, T.F., Ghassemi, M.R., Kirby, E. & Strecker, M.R. (2015) The growth of a mountain belt forced by base‐level fall: tectonics and surface processes during the evolution of the Alborz Mountains, N Iran. Earth Planet. Sci. Lett., 425, 204–218.
    [Google Scholar]
  17. Balling, P. (2014) Deformation styles and exhumation patterns in the Northern Iranian Plateau: an integrated balanced cross sections and low‐T thermochronology (Apatite and Zircon U/‐Th/He) study, Master thesis, University of Potsdam.
  18. Bottrill, A.D., van Hunen, J. & Allen, M.B. (2012) Insight into collision zone dynamics from topography: numerical modelling results and observations. Solid Earth, 3, 387–399.
    [Google Scholar]
  19. Carrapa, B. & DeCelles, P.G. (2008) Eocene exhumation and basin development in the Puna of northwestern Argentina. Tectonics, 27, TC002127.
    [Google Scholar]
  20. Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. & Iizuka, Y. (2013) Zircon UPb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162, 70–87.
    [Google Scholar]
  21. Davies, R.G. (1977) Geological map of Bandar e Pahlavi quadrangle. Geological Survey of Iran, Tehran, scale 1:250,000.
  22. DeCelles, P.G. & Horton, B.K. (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol. Soc. Am. Bull., 115, 58–77.
    [Google Scholar]
  23. Emami, M.H. (1990) Geological map of Mianeh quadrangle. Geological Survey of Iran, Tehran, scale 1:100,000.
  24. Engdahl, E., Jackson, J., Myers, S., Bergman, E. & Priestley, K. (2006) Relocation and assessment of seismicity in the Iran region. Geophys. J. Int., 167, 761–788.
    [Google Scholar]
  25. Faccenna, C., Becker, T.W., Jolivet, L. & Keskin, M. (2013) Mantle convection in the Middle East: reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett., 373, 254–269.
    [Google Scholar]
  26. Fielding, E., Isacks, B., Barazangi, M. & Duncan, C. (1994) How flat is Tibet?Geology, 22, 163–167.
    [Google Scholar]
  27. Ford, M., Williams, E.A., Artoni, A., Vergés, J. & Hardy, S. (1997) Progressive evolution of a fault‐related fold pair from growth strata geometries, Sant Llorenc de Morunys, SE Pyrenees. J. Struct. Geol., 19, 413–441.
    [Google Scholar]
  28. François, T., Agard, P., Bernet, M., Meyer, B., Chung, S.L., Zarrinkoub, M.H., Burov, E. & Monié, P. (2014a) Cenozoic exhumation of the internal Zagros: first constraints from low‐temperature thermochronology and implications for the build‐up of the Iranian plateau. Lithos, 206–207, 100–112.
    [Google Scholar]
  29. François, T., Burov, E., Agard, P. & Meyer, B. (2014b) Buildup of a dynamically supported orogenic plateau: numerical modeling of the Zagros/Central Iran case study. Geochem. Geophys. Geosyst., 15, GC005223.
    [Google Scholar]
  30. Garcia Castellanos, D.M. (2007) The role of climate during high plateau formation. Insights from numerical experiments. Earth Planet. Sci. Lett., 257, 372–390.
    [Google Scholar]
  31. Gilg, A.H., Boni, M., Balassone, G., Allen, C.R., Banks, D. & Moore, F. (2005) Marble‐hosted sulphide ores in the Angouran Zn‐(Pb‐Ag) deposit, NW Iran: interaction of sedimentary brines with metamorphic core complex. Miner. Deposita, 41, 1–16.
    [Google Scholar]
  32. Gradstein, F.M., Ogg, J.G., Schmitz, M. & Ogg, G. (2012) The Geologic Time Scale 2012. Elsevier, Cambridge University Press, Cambridge.
    [Google Scholar]
  33. Guest, B., Horton, B.K., Axen, G.J., Hassanzadeh, J. & McIntosh, W.C. (2007) Middle to late Cenozoic basin evolution in the western Alborz Mountains: Implications for the onset of collisional deformation in northern Iran. Tectonics, 26, TC6011.
    [Google Scholar]
  34. Hatzfeld, D. & Molnar, P. (2010) Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys., 48, RG2005.
    [Google Scholar]
  35. Heidari, S.M., Dalarin, F., Paquette, J.‐L. & Gasquet, D. (2015) Geology, timing, and genesis of the high sulfidation Au (‐Cu) deposits of Touzlar, NW Iran. Ore Geol. Rev., 65, 460–486.
    [Google Scholar]
  36. Heller, P.L., Angevine, C.L., Winslow, N.S. & Paola, C. (1988) Two‐phase stratigraphic model of foreland basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  37. Horton, B.K. (2012) Cenozoic evolution of hinterland basins in the Andes and Tibet. In: Tectonics of Sedimentary Basins; Recent Advances (Ed. by C.Busby & A.Azor ), pp. 427–444. Wiley‐Blackwell, Oxford.
    [Google Scholar]
  38. Horton, K.B. & Schmitt, J.G. (1996) Sedimentology of a lacustrine fan‐delta system, Miocene Horse Camp Formation, Nevada, USA. Sedimentology, 43, 133–155.
    [Google Scholar]
  39. Horton, B.K., Hampton, B.A. & Waanders, G.L. (2001) Paleogene synorogenic sedimentation in the Altiplano Plateau and implications for initial mountain building in the Central Andes. Geol. Soc. Am. Bull., 113, 1387–1400.
    [Google Scholar]
  40. Hyndman, R.D., Currie, C.A., Mazzotti, S. & Frederiksen, A. (2009) Temperature control of continental lithosphere elastic thickness, Te vs Vs . Earth Planet. Sci. Lett., 277, 539–548.
    [Google Scholar]
  41. Isacks, B.L. (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J. Geophys. Res. Solid Earth, 93, 3211–3231.
    [Google Scholar]
  42. Jimenez‐Munt, I., Fernandez, M., Saura, E., Verges, J. & Garcia‐Castellanos, D. (2012) 3‐D lithospheric structure and regional/residual Bouger anomalies in the Arabia‐Eurasia collision (Iran). Geophys. J. Int., 190, 1311–1324.
    [Google Scholar]
  43. Kapp, P., Yin, A., Harrison, M.T. & Ding, L. (2005) Cretaceous‐Tertiary shortening, basin development, and volcanism in Central Tibet. Geol. Soc. Am. Bull., 117, 865–878.
    [Google Scholar]
  44. Kirschvink, J.L. (1980) The least‐squares line and plane and the analysis of paleomagnetic data. Geophys. J. Roy. Astron. Soc., 62, 699–718.
    [Google Scholar]
  45. Kraus, M.J. (2002) Basin‐scale changes in floodplain paleosols: implications for interpreting alluvial architecture. J. Sediment. Res., 72, 500–509.
    [Google Scholar]
  46. Lowenstein, T.K. & Hardie, L.A. (1985) Criteria for the recognition of salt‐pan evaporites. Sedimentology, 32, 627–644.
    [Google Scholar]
  47. Madanipour, S., Ehlers, T., Yassaghi, A., Rezaeian, M., Enkelmann, E. & Bahroudi, A. (2013) Synchronous deformation on orogenic plateau margins: insights from the Arabia‐Eurasia collision. Tectonophysics, 608, 440–451.
    [Google Scholar]
  48. Maggi, A., Jackson, J., McKenzie, D. & Priestley, K. (2000) Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28, 495–498.
    [Google Scholar]
  49. McFadden, P.L. (1990) A new fold test for paleomagnetic studies. Geophys. J. Int., 103, 163–169.
    [Google Scholar]
  50. McFadden, P.L. & McElhinny, M.W. (1988) The combined analysis of remagnetization circles and direct observations in paleomagnetism. Earth Planet. Sci. Lett., 87, 161–172.
    [Google Scholar]
  51. McFadden, P.L. & McElhinny, M.W. (1990) Classification of the reversal test in palaeomagnetism. Geophys. J. Int., 103, 725–729.
    [Google Scholar]
  52. McQuarrie, N. & van Hinsbergen, D.J.J. (2013) Retrodeforming the Arabia‐Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology, 41, 315–318.
    [Google Scholar]
  53. Miall, A.D. (1996) The Geology of Fluvial Deposits. Springer‐Verlag, Berlin. 582 pp.
    [Google Scholar]
  54. Moghadam, H.S., Li, X.H, Stern, R.J., Ghorbani, G. & Bakhshizad, F. (2016) Zircon U–Pb ages and Hf–O isotopic composition of migmatites from the Zanjan–Takab complex,NWIran: constraints on partial melting of metasediments. Lithos240–243, 34–48.
    [Google Scholar]
  55. Molinaro, M., Zeyen, H. & Laurencin, X. (2005) Lithospheric structure beneath the south‐eastern Zagros Mountains, Iran: recent slab break‐off?Terranova, 25, 1–6.
    [Google Scholar]
  56. Morley, C., Kongwung, B., Julapour, A.A., Abdolghafourian, A., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K. & Kazemi, H. (2009) Structural development of the major Late Cenozoic basin and transpressional belt in Central Iran: the Central Basin in the Qom‐Saveh area. Geosphere, 5, 325–362.
    [Google Scholar]
  57. Mouthereau, F. (2011) Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia‐Eurasia convergence. Geol. Mag., 148, 726–738.
    [Google Scholar]
  58. Mouthereau, F., Lacombe, O. & Vergés, J. (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532–535, 27–60.
    [Google Scholar]
  59. Nichols, G. (1999) Sedimentology and Stratigraphy. Blackwell, London. 419 pp.
    [Google Scholar]
  60. Poblet, J. (2012) 2D kinematic models of growth fault‐related folds in contractional settings. In: Tectonics of Sedimentary Basins; Recent Advances (Ed. by C.Busby & A.Azor ), pp. 538–564. Wiley‐Blackwell, Oxford.
    [Google Scholar]
  61. Priestley, K., McKenzies, D., Barron, J., Tatar, M. & Debayle, E. (2012) The Zagros core: deformation of the continental lithospheric mantle. Geochem. Geophys. Geosyst., 13, Q11014.
    [Google Scholar]
  62. Reichenbacher, B., Alimohammadian, H., Sabouri, J., Haghfarshi, E., Faridi, M., Abassi, S., Matzke.Karasz, R., Fellin, M.G., Carnevale, G., Schiller, W., Vasilyan, D. & Scharrer, S. (2011) Late Miocene stratigraphy, palaeoecology and palaeogeography of the Tabriz Basin (NW Iran, Eastern Paratethys). Paleogeography Paleoclimatology Paleoecology, 311, 1–18.
    [Google Scholar]
  63. Reuter, M., Piller, W.E., Harzhauser, M., Mandic, O., Berning, B., Rögl, F., Kroh, A., Aubry, M.P., Wielandt‐Schuster, U. & Hamedani, A. (2009) The Oligo‐/Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan seaway and closure of east Iranian gateways. Int. J. Earth Sci., 98, 627–650.
    [Google Scholar]
  64. Rezaeian, M., Carter, A., Hovius, N. & Allen, M.B. (2012) Cenozoic exhumation history of the Alborz Mountains, Iran: New constraints from low‐temperature chronometry. Tectonics, 31, TC2004.
    [Google Scholar]
  65. Richards, J.P., Wilkinson, D. & Ullrich, T. (2006) Geology of the sari gunay epithermal gold deposits, NW Iran. Econ. Geol., 101, 1456–1496.
    [Google Scholar]
  66. Rieben, H. (1955) The geology of the Tehran plain. Am. J. Sci., 253, 617–639.
    [Google Scholar]
  67. Saura, E., Garcia‐Castellanos, D., Cascello, E., Parravano, V., Urruela, A. & Verges, J. (2015) Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran‐Iraq). Tectonics, 34, 377–395.
    [Google Scholar]
  68. Schildgen, T.F., Yıldırım, C., Cosentino, D. & Strecker, M.R. (2014) Linking slab break‐off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth Sci. Rev., 128, 147–168.
    [Google Scholar]
  69. Smoot, J.P. (1983) Depositional sub‐environments in an arid closed basin; the Wilkins Peak Member of the Green River Formation (Eocene), Wyoming, USA. Sedimentology, 30, 801–827.
    [Google Scholar]
  70. Sobel, E.R., Hilley, G.E. & Strecker, M.R. (2003) Formation of internally drained contractional basins by aridity‐limited bedrock incision. J. Geophys. Res. Solid Earth, 108, JB001883.
    [Google Scholar]
  71. Solaymani Azad, S., Dominguez, S., Philip, H., Hessami, K., Forutan, M.‐R., Shahpasanzadeh, M. & Ritz, J.‐F. (2011) The Zandjan fault system: morphological and tectonic evidences of a new active fault network in the NW of Iran. Tectonophysics, 506, 73–85.
    [Google Scholar]
  72. Stear, W.M. (1985) Comparison of the bedform distribution and dynamics of modern and ancient sandy ephemeral flood deposits in the southwestern Karoo region, South Africa. Sed. Geol., 45, 209–230.
    [Google Scholar]
  73. Stockli, D.F., Hassanzadeh, J., Stockli, L.D., Axen, G., Walker, J.D. & Dewane, T. (2004) Structural and geochronological evidence for Oligo‐Miocene intra‐arc low‐angle detachment faulting in the Takab‐Zanjan area, NW Iran. Geol. Soc. Am. Abst. Programs, 36, 319.
    [Google Scholar]
  74. Stöcklin, J. & Eftekharnezhad, J. (1969) Geological map of Zanjan quadrangle. Geological Survey of Iran, Tehran, scale 1:250,000.
  75. Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E.R. & Trauth, M.H. (2007) Tectonics and climate of the southern Central Andes. Annu. Rev. Earth Planet. Sci., 35, 747–787.
    [Google Scholar]
  76. Strecker, M.R., Alonso, R., Bookhagen, B., Carrapa, B., Coutand, I., Hain, M.P., Hilley, G.E., Mortimer, E., Schoenbohm, L. & Sobel, E.R. (2009) Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?Geology, 37, 643–646.
    [Google Scholar]
  77. Tesauro, M., Kaban, M.K. & Cloetingh, S. (2012a) Global strength and elastic thickness of the lithosphere. Global Planet. Change, 90–91, 51–57.
    [Google Scholar]
  78. Tesauro, M., Audet, P., Kaban, M.K., Brgmann, R. & Cloetingh, S. (2012b) The effective elastic thickness of the continental lithosphere: comparison between rheological and inverse approaches. Geochem. Geophys. Geosyst., 13, GC004162.
    [Google Scholar]
  79. Van Hunen, J. & Allen, M.B. (2011) Continental collision and slab break‐off: a comparison of 3‐D numerical models with observations. Earth Planet. Sci. Lett., 302, 27–37.
    [Google Scholar]
  80. Verdel, C.S., Wernicke, B.P., Hassanzadeh, J. & Guest, B. (2011) A Paleogene extensional arc flare‐up in Iran. Tectonics, 30, TC3008.
    [Google Scholar]
  81. Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinid, J., Ashtiani, A., Bayer, R., Tavakoli, F. & Chery, J. (2004) Present‐day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int., 157, 381–398.
    [Google Scholar]
  82. Westaway, R. (1994) Present‐day kinematics of the Middle East and eastern Mediterranean. J. Geophys. Res. Solid Earth, 99, 12071–12090.
    [Google Scholar]
  83. Wickert, A.D. (2015) Open‐source modular solutions for flexural isostasy: gFlex v1.0. Geosci. Model Dev., 8, 4245–4292.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12180
Loading
/content/journals/10.1111/bre.12180
Loading

Data & Media loading...

Supplements

40Ar/39Ar geochronology: method and results. Zircon U–Pb geochronology: method and results. Rock demagnetization: method and results. Rock magnetic results. Flexural modelling and flexural backstrip. Shortening rate calculation.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error