1887
Volume 23, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Improved prediction of the recovery of oil-in-place in basin-floor fan reservoirs requires accurate characterization and modelling of multiscale heterogeneities. The use of outcrop analogues is a key tool to augment this process by documenting and quantifying sedimentary architecture, hierarchy and sedimentary facies relationships. A 3D geological modelling workflow is presented that tests the impact of fine-scale heterogeneities within basin-floor lobe complexes on reservoir connectivity. Construction of geological models of a basin-floor lobe complex allows realistic depositional architecture and facies distributions to be captured. In addition, detailed models are constructed from channelized areas within a basin-floor lobe complex. Petrophysical modelling and streamline analysis are employed to test the impact on reservoir connectivity between lobe models with: (i) vertically stacked facies with coarsening- and thickening-upwards trends in all locations; and (ii) lateral facies changes with dimensions and distributions constrained from outcrop data. The findings show that differences in facies architecture and, in particular, lobe-on-lobe amalgamation have a significant impact on connectivity and macroscopic sweep efficiency, which influence the production results. Channelized lobe areas are less predictable reservoir targets owing to uncertainties associated with channel-fill heterogeneities. The use of deterministic sedimentary architecture concepts and facies relationships have proven vital in the accurate modelling of reservoir heterogeneities.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-087
2016-09-30
2024-04-19
Loading full text...

Full text loading...

References

  1. Aarnes, J.E., Krogstad, S. & Lie, K-A.
    2008. Multiscale mixed/mimetic methods on corner-point grids. Computational Geosciences, 12, 297–315, http://doi.org/10.1007/s10596-007-9072-8
    [Google Scholar]
  2. Alabert, F.G. & Massonnat, G.J.
    1990. Heterogeneity in a complex turbiditic reservoir: stochastic modelling of facies and petrophysical variability. Paper SPE 20604 presented at the SPE Annual Technical Conference and Exhibition , 23–26 September 1990, New Orleans, Louisiana, USA.
  3. Alhuthali, A., Oyerinde, A. & Datta-Gupta, A.
    2006. Optimal waterflood management using rate controls. SPE 102478 presented at the SPE Annual Technical Conference and Exhibition , 24–27 September 2006, San Antonio, Texas, USA.
  4. Alpak, F.O., Barton, M.D. & Naruk, S.J.
    2013. The impact of fine-scale turbidite channel architecture on deep-water reservoir performance.American Association of Petroleum Geologists Bulletin, 97, 251–284, http://doi.org/10.1306/04021211067
    [Google Scholar]
  5. Amy, L.A., Peachey, S.A., Gardiner, A.R., Pickup, G.E., Mackay, E. & Stephen, K.D.
    2013. Recovery efficiency from a turbidite sheet system: numerical simulation of waterflooding using outcrop-based geological models. Petroleum Geoscience, 19, 123–138, http://doi.org/10.1144/petgeo2011-041
    [Google Scholar]
  6. Avseth, P., Mukerji, T., Jørstad, T., Mavko, A. & Veggeland, T.
    2001. Seismic reservoir mapping from 3-D AVO in a North Sea turbidite system. Geophysics, 66, 1157–1176, http://doi.org/10.1190/1.1487063
    [Google Scholar]
  7. Barton, M., O'Byrne, C., Pirmez, C., Prather, B., Van der Vlugt, F., Alpak, F.O. & Sylvester, Z.
    2010. Turbidite channel architecture: Recognizing and quantifying the distribution of channel-base drapes using core and dipmeter data. In: Pöppelreiter, M., García-Carballido, C. & Kraaijveld, M. (eds) Dipmeter and Bore-Hole Image Log Technology. American Association of Petroleum Geologists, Memoirs, 92, 195–210, http://doi.org/10.1306/13181284M923289
    [Google Scholar]
  8. Beaubouef, R.T., Van Wagoner, J.C. & Adair, N.L.
    2003. Ultra-high resolution 3-D characterization of deep-water deposits – II: Insights into the evolution of a submarine fan and comparisons with river deltas. Extended abstracts presented at the AAPG Annual Meeting , May 11–14, 2003, Salt Lake City, Utah, USA.
  9. Bennes, M. & Hamon, G.
    2007. Core petrophysical synthesis carried out at a scale of a basin, some examples from Tertiary offshore reservoirs. In: Proceedings from the 2007 International Symposium of the Society of Core Analysts, September 10–13, 2007, Calgary, Canada . Society of Core Analysts, Fredericton, New Brunswick, Canada, Paper SCA2007-27.
    [Google Scholar]
  10. Bouma, A. & Wickens, H.d.V.
    1991. Permian passive margin submarine fan complex, Karoo Basin, South Africa: Possible model to Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 41, 30–42.
    [Google Scholar]
  11. 1994. Tanqua Karoo, ancient analog for fine-grained submarine fans. In: Weimer, P., Bouma, A.H. & Perkins, B.F. (eds) Submarine Fans and Turbidite Systems: Sequence Stratigraphy, Reservoir Architecture, and Production Characteristics. Gulf Coast Section SEPM Foundation 15th Research Conference Proceedings.GCSSEPM, Houston, Texas, USA, 23–34.
    [Google Scholar]
  12. Brandsæter, I., Wist, H.T. et al.
    2001. Ranking of stochastic realizations of complex tidal reservoirs using streamline simulation criteria. Petroleum Geoscience, 7, S53–S63, http://doi.org/10.1144/petgeo.7.S.S53
    [Google Scholar]
  13. Brouwer, D.R. & Jansen, J.D.
    2002. Dynamic optimization of water flooding with smart wells using optimal control theory. Paper SPE 78278 presented at the SPE European Petroleum Conference , 29–31 October 2002, Aberdeen, UK.
  14. Brouwer, D.R., Jansen, J.D., Van der Starre, S., Van Kruijsdijk, C.P.J.W. & Berentsen, C.W.J.
    2001. Recovery increase through water flooding with smart well technology. Paper SPE 68979 presented at the SPE European Formation Damage Conference , 21–22 May 2001, The Hague, The Netherlands.
  15. Brunt, R.L., Hodgson, D.M., Flint, S.S., Pringle, J.K., Di Celma, C., Prélat, A. & Grecula, M.
    2013. Confined to unconfined: anatomy of a base of slope succession, Karoo Basin, South Africa. Marine and Petroleum Geology, 41, 206–221, http://doi.org/10.1016/j.marpetgeo.2012.02.007
    [Google Scholar]
  16. Bryant, I.D. & Flint, S.S.
    1993. Quantitative clastic reservoir geological modelling: problems and perspectives. In: Flint, S.S. & Bryant, I.I. (eds) The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues. International Association of Sedimentologists, Special Publications, 15, 3–20.
    [Google Scholar]
  17. Clark, J.D. & Pickering, K.T.
    1996. Architectural elements and growth patterns of submarine channels: application to hydrocarbon exploration. American Association of Petroleum Geologists Bulletin, 80, 194–220.
    [Google Scholar]
  18. Deptuck, M.E., Piper, M.E., David, J.W., Savoye, B. & Gervais, A.
    2008. Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55, 869–898, http://doi.org/10.1111/j.1365-3091.2007.00926.x
    [Google Scholar]
  19. De Wit, M.J. & Ransome, I.G.
    1992. Regional inversion tectonics along the southern margin of Gondwana. In: De Wit, M.J. & Ransome, I.G.D. (eds) Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa. Balkema, Amsterdam, The Netherlands, 15–22.
    [Google Scholar]
  20. Drinkwater, N.J. & Pickering, K.T.
    2001. Architectural elements in a high-continuity sand-prone turbidite system, late Precambrian Kongsfjord Formation, northern Norway: Application to hydrocarbon reservoir characterization. American Association of Petroleum Geologists Bulletin, 85, 1731–1757, http://doi.org/10.1306/8626D059-173B-11D7-8645000102C1865D
    [Google Scholar]
  21. Eschard, R., Deschamps, R., Dobligez, B., Lerat, O., Langlais, V. & Euzen, T.
    2014. Connectivity estimation between turbiditic channels and overbank deposits from the modelling of an outcrop analogue (Pab Formation, Maastrichtian, Pakistan). In: Martinius, A.W., Howell, J.A. & Good, T.R. (eds) Sediment-Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface. Geological Society, London, Special Publications, 387, 203–231, http://doi.org/10.1144/SP387.7
    [Google Scholar]
  22. Falivene, O., Arbués, P., Howell, J., Muñoz, J.A., Fernández, O. & Marzo, M.
    2006. Hierarchical geocellular facies modelling of a turbidite reservoir analogue from the Eocene of the Ainsa Basin, NE Spain. Marine and Petroleum Geology, 23, 679–701, http://doi.org/10.1016/j.marpetgeo.2006.05.004
    [Google Scholar]
  23. Fildani, A., Weislogel, A. et al.
    2009. U–Pb zircon ages from the southwestern Karoo Basin, South Africa – Implications for the Permian–Triassic boundary. Geology, 37, 719–222, http://doi.org/10.1130/G25685A.1
    [Google Scholar]
  24. Flint, S.S., Hodgson, D.M. et al.
    2011. Depositional architecture and sequence stratigraphy of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South Africa. Marine and Petroleum Geology, 28, 658–674, http://doi.org/10.1016/j.marpetgeo.2010.06.008
    [Google Scholar]
  25. Funk, J.E., Slatt, R.M. & Pyles, D.R.
    2012. Quantification of static connectivity between deep-water channels and stratigraphically adjacent architectural elements using outcrop analogs. American Association of Petroleum Geologists Bulletin, 96, 277–300, http://doi.org/10.1306/07121110186
    [Google Scholar]
  26. Groenenberg, R.M., Hodgson, D.M., Prélat, A., Luthi, S.M. & Flint, S.S.
    2010. Flow–deposit interaction in submarine lobes: Insights from outcrop observations and realizations of a process-based numerical model. Journal of Sedimentary Research, 80, 252–267, http://doi.org/10.2110/jsr.2010.028
    [Google Scholar]
  27. Hewett, T.A.
    1986. Fractal distributions of reservoir heterogeneity and their influence on fluid transport. SPE 15386 presented at the SPE Annual Technical Conference and Exhibition , 5–8 October 1986, New Orleans, Louisiana, USA.
  28. Hodgetts, D., Drinkwater, N.J., Hodgson, D.M., Kavanagh, J., Flint, S.S., Keogh, K.J. & Howell, J.A.
    2004. Three-dimensional geological models from outcrop data using digital data collection techniques: an example from the Tanqua Karoo depocentre, South Africa. In: Curtis, A.C. & Wood, R. (eds) Geological Prior Information: Informing Science and Engineering. Geological Society, London, Special Publications, 239, 57–75, http://doi.org/10.1144/GSL.SP.2004.239.01.05
    [Google Scholar]
  29. Hodgson, D.M.
    2009. Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa. Marine and Petroleum Geology, 26, 1940–1956, http://doi.org/10.1016/j.marpetgeo.2009.02.011
    [Google Scholar]
  30. Hodgson, D.M., Flint, S.S., Hodgetts, D., Drinkwater, N.J., Johannessen, E.P. & Luthi, S.M.
    2006. Stratigraphic evolution of fine-grained submarine fan systems, Tanqua depocenter, Karoo Basin, South Africa.Journal of Sedimentary Research, 76, 20–40, http://doi.org/10.2110/jsr.2006.03
    [Google Scholar]
  31. Hofstra, M., Hodgson, D.M., Peakall, J. & Flint, S.S.
    2015. Giant scour-fills in ancient channel–lobe transition zones: Formative processes and depositional architecture. Sedimentary Geology, 329, 98–114, http://doi.org/10.1016/j.sedgeo.2015.09.004
    [Google Scholar]
  32. Hovadik, J.M. & Larue, D.K.
    2007. Static characterizations of reservoirs: refining the concepts of connectivity and continuity. Petroleum Geoscience, 13, 195–211, http://doi.org/10.1144/1354-079305-697
    [Google Scholar]
  33. Howell, J.A., Martinius, A.W. & Good, T.R.
    2014. The application of outcrop analogues in geological modelling: a review, present status and future outlook. In: Martinius, A.W., Howell, J.A. & Good, T.R. (eds) Sediment-Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface. Geological Society, London, Special Publications, 387, 1–25, http://doi.org/10.1144/SP387.12
    [Google Scholar]
  34. Hubbard, S.M., Covault, J.A., Fildani, A. & Romans, B.W.
    2014. Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep-sea processes from outcrop. Geological Society of America Bulletin, 126, 857–871, http://doi.org/10.1130/B30996.1
    [Google Scholar]
  35. Idrobo, E.A., Choudhary, M.K. & Datta-Gupta, A.
    2000. Swept volume calculations and ranking geostatistical reservoir models using streamline simulation. Paper SPE 62557 presented at the SPE/AAPG Western Regional Meeting , 19–22 June 2000, Long Beach, California, USA.
  36. Jackson, M., Percival, J., Mostaghimi, P., Tollit, B., Pavlidis, D., Pain, C. & Blunt, M.
    2015. Reservoir modelling of flow simulation by use of surfaces, adaptive unstructured meshes, and an overlapping-control-volume finite-element method. SPE Reservoir Evaluation & Engineering, 18, 115–132, http://doi.org/10.2118/163633-PA
    [Google Scholar]
  37. Johnson, S.D., Flint, S.S., Hinds, D. & Wickens, H.d.V.
    2001. Anatomy, geometry and sequence stratigraphy of basin floor to slope turbidite systems, Tanqua Karoo, South Africa. Sedimentology, 48, 987–1023, http://doi.org/10.1046/j.1365-3091.2001.00405.x
    [Google Scholar]
  38. Joseph, P., Babonneau, N. et al.
    2000. The Annot Sandstone outcrops (French Alps): Architecture description as input for quantification and 3-D reservoir modelling. In: Weimer, P., Slatt, R.M., Coleman, J., Rosen, N.C., Nelson, H., Bouma, A.H., Styzen, M.J. & Lawrence, D.T. (eds) Deep-Water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Research Conference, 3–6 December 2000, Houston, Texas. GCSSEPM, Special Publications, 28, 422–449.
    [Google Scholar]
  39. Kane, I.A. & Pontén, A.S.M.
    2012. Submarine transitional flow deposits in the Palaeogene Gulf of Mexico. Geology, 40, 1119–1122, http://doi.org/10.1130/G33410.1
    [Google Scholar]
  40. Keogh, K.J., Berg, F.K. & Petek, G
    . 2008. A method for quantifying geological uncertainties in assessing remaining oil targets: a case study from the Glitne Field, North Sea. In: Robinson, A., Griffiths, P., Price, S., Hegre, J., Muggeridge, A. (eds) The Future of Geological Modelling in Hydrocarbon Development. Geological Society, London, Special Publications, 309, 193–203, http://doi.org/10.1144/SP309.14
    [Google Scholar]
  41. Kirschner, R.H. & Bouma, A.H.
    2000. Characteristics of a distributary channel–levee–overbank system, Tanqua Karoo. In: Bouma, A.H. & Stone, J. (eds) Fine-Grained Turbidite Systems. American Association of Petroleum Geologists, Memoirs, 80, 337–364.
    [Google Scholar]
  42. Kleverlaan, K. & Cossey, S.P.J.
    1993. Permeability barriers within sand-rich submarine fans: outcrop studies of the Tabernas Basin, SE Spain. In: Eschard, R. & Doligez, B. (eds) Subsurface Reservoir Characterisation from Outcrop Observations. Editions Technip, Paris, 161–164.
    [Google Scholar]
  43. Labourdette, R., Devilliers, M.C. & Bui, T.
    2013. History match of a DST using a turbidite elementary channels modelling technique, deep offshore Congo. Paper SPE-166006 presented at the SPE Reservoir Characterization and Simulation Conference and Exhibition , 16–18 September 2013, Abu Dhabi, UAE.
  44. Larue, D.K.
    2004. Outcrop and waterflood simulation modeling of the 100-foot channel complex, Texas, and the Ainsa II channel complex, Spain: Analogs to multistory and multilateral channelized slope reservoirs. In: Grammer, M., Harris, P.M. & Eberli, G.P. (eds) Integration of Outcrop and Modern Analogs in Reservoir Modelling. American Association of Petroleum Geologists, Memoirs, 80, 337–364.
    [Google Scholar]
  45. Larue, D.K. & Friedmann, F.
    2005. The controversy concerning stratigraphic architecture of channelized reservoirs and recovery by waterflooding.Petroleum Geoscience, 11, 131–146, http://doi.org/10.1144/1354-079304-626
    [Google Scholar]
  46. Larue, D.K. & Hovadik, J.
    2012. Rapid earth modelling for appraisal and development studies of deep-water clastic reservoirs and the concept of ‘procycling’. Petroleum Geoscience, 18, 201–218, http://doi.org/10.1144/1354-079311-033
    [Google Scholar]
  47. López-Gamundí, O.R. & Rossello, E.A.
    1998. Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin–Ventana foldbelt (Argentina) and Karoo basin–Cape foldbelt (South Africa) revisited.Geologische Rundschau, 86, 819–834, http://doi.org/10.1144/1354-079311-033
    [Google Scholar]
  48. Luthi, S.M., Hodgson, D.M., Geel, C.R., Flint, S.S., Goedbloed, J.W., Drinkwater, N.J. & Johannessen, E.P.
    2006. Contribution of research borehole data to modelling fine-grained turbidite reservoir analogues, Permian Tanqua–Karoo basin-floor fans (South Africa). Petroleum Geoscience, 12, 175–190, http://doi.org/10.1144/1354-079305-693
    [Google Scholar]
  49. Macdonald, H.A., Peakall, J., Wignall, P.B. & Best, J.
    2011. Sedimentation in deep-sea lobe-elements: implications for the origin of thickening-upward sequences. Journal of the Geological Society, London, 168, 319–331, http://doi.org/10.1144/0016-76492010-036
    [Google Scholar]
  50. Mayall, M., Jones, E. & Casey, M.
    2006. Turbidite channel reservoirs – key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821–841, http://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  51. McKay, M.P., Weislogel, A.L., Fildani, A., Brunt, R.L., Hodgson, D.M. & Flint, S.S.
    2015. U-PB zircon tuff geochronology from the Karoo Basin, South Africa: implications of zircon recycling on stratigraphic age controls.International Geology Review, 57, 393–410, http://doi.org/10.1080/00206814.2015.1008592
    [Google Scholar]
  52. Mutti, E.
    1977. Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South-central Pyrenees, Spain). Sedimentology, 24, 107–131, http://doi.org/10.1111/j.1365-3091.1977.tb00122.x
    [Google Scholar]
  53. Mutti, E. & Sonnino, M.
    1981. Compensation cycles: a diagnostic feature of sandstone lobes. In: Abstracts Volume, 2nd IAS European Regional Meeting, Bologna, Italy . International Association of Sedimentology, Gent, Belgium, 120–123.
    [Google Scholar]
  54. Piper, D.J.W. & Normark, W.R.
    1983. Turbidite depositional patterns and flow characteristics, Navy Submarine Fan, California Borderland. Sedimentology, 30, 681–694, http://doi.org/10.1111/j.1365-3091.1983.tb00702.x
    [Google Scholar]
  55. Pirmez, C., Beaubouef, R.T., Friedmann, S.J. & Mohrig, D.C.
    2000. Equilibrium profile and baselevel in submarine channels: examples from Late Pleistocene systems and implications for the architecture of deepwater reservoirs. In: Weimer, P., Slatt, R.M., Coleman, J., Rosen, N.C., Nelson, H., Bouma, A.H., Styzen, M.J. & Lawrence, D.T. (eds) Deep-Water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Research Conference . GCSSEPM, Special Publications, 782–805.
    [Google Scholar]
  56. Prélat, A.
    2010. Evolution, architecture and hierarchy of distributary deepwater deposits: a high resolution outcrop investigation of submarine lobe deposits from the Permian Karoo Basin, South Africa. Unpublished PhD Thesis, University of Liverpool.
    [Google Scholar]
  57. Prélat, A. & Hodgson, D.M.
    2013. The full range of turbidite bed thickness patterns in submarine lobes: controls and implications. Journal of the Geological Society, London, 170, 209–214, http://doi.org/10.1144/jgs2012-056
    [Google Scholar]
  58. Prélat, A., Hodgson, D.M. & Flint, S.S.
    2009. Evolution, architecture and hierarchy of distributary deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154, http://doi.org/10.1111/j.1365-3091.2009.01073.x
    [Google Scholar]
  59. Prélat, A., Covault, J.A., Hodgson, D.M., Fildani, A. & Flint, S.S.
    2010. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232, 66–76, http://doi.org/10.1016/j.sedgeo.2010.09.010
    [Google Scholar]
  60. Pringle, J.K., Howell, J.A., Hodgetts, D., Westerman, A.R. & Hodgson, D.M.
    2006. Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art. First Break, 24, 33–42, http://doi.org/10.3997/1365-2397.2006005
    [Google Scholar]
  61. Pringle, J.K., Brunt, R.L., Hodgson, D.M. & Flint, S.S.
    2010. Capturing stratigraphic and sedimentological complexity from submarine channel complex outcrops to digital 3D models, Karoo Basin, South Africa. Petroleum Geoscience, 16, 307–330, http://doi.org/10.1144/1354-079309-028
    [Google Scholar]
  62. Pyrcz, M.J. & Deutsch, C.V.
    2014. Geostatistical reservoir modelling. Oxford University Press, New York.
    [Google Scholar]
  63. Pyrcz, M.J., Catuneanu, O. & Deutsch, C.V.
    2005. Stochastic surface-based modeling of turbidite lobes. American Association of Petroleum Geologists Bulletin, 89, 177–191, http://doi.org/10.1306/09220403112
    [Google Scholar]
  64. Ricci-Lucchi, F.
    1975. Depositional cycles in two turbidite formations of Northern Apennines (Italy). Journal of Sedimentary Petrology, 45, 3–43, http://doi.org/10.1306/212F6CB7-2B24-11D7-8648000102C1865D
    [Google Scholar]
  65. Richards, M. & Bowman, M.
    1998. Submarine fans and related depositional systems II: variability in reservoir architecture and wireline log character. Marine and Petroleum Geology, 15, 821–839, http://doi.org/10.1016/S0264-8172(98)00042-7
    [Google Scholar]
  66. Ringrose, P. & Bentley, M.
    2015. Reservoir Model Design. Springer, Berlin.
    [Google Scholar]
  67. Saikia, K., Khan, W. & Ramakrishnan, S.
    2015. Challenges in deepwater reservoir characterization: From well log interpretation and well testing to 3D geocellular modelling. Paper SPE 175071 presented at the SPE Annual Technical Conference and Exhibition , 28–30 September 2015, Houston, Texas, USA.
  68. Saller, A., Werner, K., Sugiaman, F., Fransiskus, C.A., May, R., Glenn, D. & Craig, B.
    2008. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia. American Association of Petroleum Geologists Bulletin, 92, 919–949, http://doi.org/10.1306/03310807110
    [Google Scholar]
  69. Scaglioni, P., Ruvo, L. & Cozzi, M.
    2006. Implicit net-to-gross in the petrophysical characterization of thin-layered reservoirs. Petroleum Geoscience, 12, 325–333, http://doi.org/10.1144/1354-079305-694
    [Google Scholar]
  70. Schwarz, E. & Arnott, R.W.C.
    2007. Anatomy and evolution of a slope channel-complex set (Neoproterozoic Isaac Formation, Windermere Supergroup, southern Canadian Cordillera): implications for reservoir characterizations. Journal of Sedimentary Research, 77, 89–109, http://doi.org/10.2110/jsr.2007.015
    [Google Scholar]
  71. Shanmugam, G. & Moiola, R.J.
    1991. Types of submarine fan lobes: Models and implications. American Association of Petroleum Geologists Bulletin, 75, 156–179.
    [Google Scholar]
  72. Sprague, A.R.G., Garfield, T.R. et al.
    2005. Integrated slope channel depositional models: the key to successful prediction of reservoir presence and quality in offshore west Africa. CIPM (Colegio de Ingenieros Petroleros de México), cuarto E-Exitep 2005, 20–23 February 2005, Veracruz, Mexico, 1–13.
    [Google Scholar]
  73. Stephen, K.D., Clark, J.D. & Gardiner, A.R.
    2001. Outcrop-based stochastic modelling of turbidite amalgamation and its effects on hydrocarbon recovery.Petroleum Geology, 7, 163–172, http://doi.org/10.1144/petgeo.7.2.163
    [Google Scholar]
  74. Stevenson, C.J., Jackson, C.A.L., Hodgson, D.M., Hubbard, S.M. & Eggenhuisen, J.T.
    2015. Deep-water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081, http://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  75. Stow, D.A. & Johansson, M.
    2000. Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17, 145–174, http://doi.org/10.1016/S0264-8172(99)00051-3
    [Google Scholar]
  76. Straub, K.M. & Pyles, D.R.
    2012. Quantifying the hierarchical organization of compensation in submarine fans using surface statistics. Journal of Sedimentary Research, 82, 889–898, http://doi.org/10.2110/jsr.2012.73
    [Google Scholar]
  77. Strebelle, S., Payrazyan, K. & Caers, J.
    2003. Modeling of a deepwater turbidite reservoir conditional to seismic data using principal component analysis and multiple-point geostatistics. SPE Journal, 8, 227–235, http://doi.org/10.2118/85962-PA
    [Google Scholar]
  78. Sullivan, M., Jensen, G., Goulding, F., Jennette, D., Foreman, L. & Stern, D.
    2000. Architectural analysis of deep-water outcrops: Implications for exploration and development of the Diana sub-basin, western Gulf of Mexico. In: Weimer, P., Slatt, R.M., Coleman, J., Rosen, N.C., Nelson, H., Bouma, A.H., Styzen, M.J. & Lawrence, D.T. (eds) Deep-Water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Research Conference . GCSSEPM, Special Publications, 1010–1032.
    [Google Scholar]
  79. Sullivan, M.D., Foreman, J.L., Jennette, D.C., Stern, D., Jensen, G.N. & Goulding, F.J.
    2004. An integrated approach to characterization and modelling of deep-water reservoirs, Diana field, western Gulf of Mexico. In: Grammer, G.M., Harris, P.M. & Eberli, G.P. (eds) Integration of Outcrop and Modern Analogs in Reservoir Modeling. American Association of Petroleum Geologists, Memoirs, 80, 215–234.
    [Google Scholar]
  80. Van der Werff, W. & Johnson, S.
    2003. High resolution stratigraphic analysis of a turbidite system, Tanqua Karoo Basin, South Africa. Marine and Petroleum Geology, 20, 45–69, http://doi.org/10.1016/S0264-8172(03)00025-4
    [Google Scholar]
  81. Veevers, J.J., Cole, D.I. & Cowan, E.J.
    1994. Southern Africa: Karoo basin and Cape fold belt. In: Veevers, J.J. & Powell, C.Mc.A. (eds) Permian–Triassic Pangean Basins along the Panthalassan Margin of Gondwanaland. Geological Society of America, Memoirs, 184, 223–279, http://doi.org/10.1130/MEM184-p223
    [Google Scholar]
  82. Wild, R., Flint, S.S. & Hodgson, D.M.
    2005. Architecture and stratigraphic evolution of multiple, vertically-stacked slope channel compexes, Tanqua depocentre, Karoo Basin, South Africa. In: Hodgson, D.M. & Flint, S.S. (eds). Submarine Slope Systems: Processes and Products. Geological Society, London, Special Publications, 244, 89–111, http://doi.org/10.1144/GSL.SP.2005.244.01.06
    [Google Scholar]
  83. Williams, G.J.J., Mansfield, M., McDonald, D.G. & Bush, M.D.
    2004. Top-down reservoir modelling. Paper SPE 89974 presented at the SPE Annual Technical Conference and Exhibition , 26–29 September 2004, Houston, Texas, USA.
  84. Zhang, X., Pyrcz, M.J. & Deutsch, C.V.
    2009. Stochastic surface modeling of deepwater depositional systems for improved reservoir models. Journal of Petroleum Science and Engineering, 68, 118–134, http://doi.org/10.1016/j.petrol.2009.06.019
    [Google Scholar]
  85. Zou, F., Slatt, R., Bastidas, R. & Ramirez, B.
    2012. Integrated outcrop reservoir characterization, modelling, and simulation of the Jackfork Group at the Baumgartner Quarry area. American Association of Petroleum Geologists Bulletin, 96, 1429–1448, http://doi.org/10.1306/01021210146
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-087
Loading
/content/journals/10.1144/petgeo2016-087
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error