1887

Abstract

Summary

Wavefield modeling is necessary in modern seismic imaging applications such as reverse time migration and full-waveform inversion. When the medium has complex structures such as salt bodies or carbonate reservoirs finite-difference methods (FDM) for wavefield simulation (extrapolation) are typically used to handle those cases. FDM allows us to simulate a multitude of realistic wave phenomena, but in some cases it makes our applications computationally intensive. When large numbers of sources and receivers are considered, a large number of wavefield extrapolations in the process of inversion is executed. To accelerate the 3-D wavefield simulation in elastic orthorhombic anisotropic media we rely on GPU technology. With the OpenAcc PGI compiler we create a pool of automatically managed memory that is shared between the CPU and GPU, thus achieving data management with minimal code modifications. We collapse the tightly nested loops used for velocity and stress updates which allows us to improve the execution time of the whole code by about ten percent. We report a performance speedup as we compare to a 16 core dual socket Haswell server of 1.15X on a K80 GPU and 2.32X when using the Pascal Tesla P100 GPU.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201702323
2017-10-01
2024-04-19
Loading full text...

Full text loading...

References

  1. Alkhalifah, T.
    (2000). An acoustic wave equation for anisotropic media.Geophysics, 65(4), 1239–1250.
    [Google Scholar]
  2. Baeten, G., de Maag, J. W., Plessix, R.-E., Klaassen, R., Qureshi, T., Kleemeyer, M., Kroode, F. t. and Rujie, Z.
    (2013), The use of low frequencies in a full-waveform inversion and impedance inversion land seismic case study. Geophysical Prospecting, 61: 701–711.
    [Google Scholar]
  3. Bohlen, T.
    (2002). Parallel 3-D viscoelastic finite difference seismic modelling.Computers & Geosciences, 28(8), 887–899.
    [Google Scholar]
  4. Fehler, M. and Keliher, P.J.
    [2011] SEAM Phase I: Challenges of subsalt imaging in tertiary basins, with emphasis on deepwater Gulf of Mexico.Society of Exploration Geophysicists, USA.
    [Google Scholar]
  5. Jablin, T. B., Jablin, J. A., Prabhu, P., Liu, F., & August, D. I.
    (2012). Dynamically managed data for CPU-GPU architectures. InProceedings of the Tenth International Symposium on Code Generation and Optimization (pp. 165–174). ACM.
    [Google Scholar]
  6. Hoshino, T., Maruyama, N., Matsuoka, S., & Takaki, R.
    (2013). CUDA vs OpenACC: Performance case studies with kernel benchmarks and a memory-bound CFD application. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on (pp. 136–143). IEEE.
    [Google Scholar]
  7. Kazei, V., Tessmer, E., & Alkhalifah, T.
    (2016). Scattering angle-based filtering via extension in velocity. InSEG Technical Program Expanded Abstracts 2016 (pp. 1157–1162). Society of Exploration Geophysicists.
    [Google Scholar]
  8. Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., … & Singhal, R.
    (2010). Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU.ACM SIGARCH Computer Architecture News, 38(3), 451–460.
    [Google Scholar]
  9. Masmoudi, N., & Alkhalifah, T.
    (2016). A new parameterization for waveform inversion in acoustic orthorhombic media.Geophysics, 81(4), R157–R171.
    [Google Scholar]
  10. Moczo, P., Kristek, J. and Halada, L.
    [2000] 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion.Bulletin of the Seismological Society of America, 90, 587–603.
    [Google Scholar]
  11. Oh, J. W., & Alkhalifah, T.
    (2016). 3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data. InSEG Technical Program Expanded Abstracts 2016 (pp. 1206–1210). Society of Exploration Geophysicists.
    [Google Scholar]
  12. Raknes, E. B., Arntsen, B., & Weibull, W.
    (2015). Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area.Geophysical Journal International, 202(3), 1877–1894.
    [Google Scholar]
  13. Saenger, E. H., & Bohlen, T.
    (2004). Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid.Geophysics, 69(2), 583–591.
    [Google Scholar]
  14. Tsvankin, I.
    (1997). Anisotropic parameters and P-wave velocity for orthorhombic media.Geophysics, 62(4), 1292–1309.
    [Google Scholar]
  15. Virieux, J.
    (1986). P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method.Geophysics, 51(4), 889–901.
    [Google Scholar]
  16. Virieux, J., Calandra, H. and Plessix, R.-É.
    (2011), A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophysical Prospecting, 59: 794–813. doi:10.1111/j.1365‑2478.2011.00967.x
    https://doi.org/10.1111/j.1365-2478.2011.00967.x [Google Scholar]
  17. Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., … & Conroy, G.
    (2013). Anisotropic 3D full-waveform inversion.Geophysics, 78(2), R59–R80.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201702323
Loading
/content/papers/10.3997/2214-4609.201702323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error