1887
Volume 15 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Seafloor networks of cables, pipelines, and other infrastructure underpin our daily lives, providing communication links, information, and energy supplies. Despite their global importance, these networks are vulnerable to damage by a number of natural seafloor hazards, including landslides, turbidity currents, fluid flow, and scour. Conventional geophysical techniques, such as high‐resolution reflection seismic and side‐scan sonar, are commonly employed in geohazard assessments. These conventional tools provide essential information for route planning and design; however, such surveys provide only indirect evidence of past processes and do not observe or measure the geohazard itself. As such, many numerical‐based impact models lack field‐scale calibration, and much uncertainty exists about the triggers, nature, and frequency of deep‐water geohazards. Recent advances in technology now enable a step change in their understanding through direct monitoring. We outline some emerging monitoring tools and how they can quantify key parameters for deep‐water geohazard assessment. Repeat seafloor surveys in dynamic areas show that solely relying on evidence from past deposits can lead to an under‐representation of the geohazard events. Acoustic Doppler current profiling provides new insights into the structure of turbidity currents, whereas instrumented mobile sensors record the nature of movement at the base of those flows for the first time. Existing and bespoke cabled networks enable high bandwidth, low power, and distributed measurements of parameters such as strain across large areas of seafloor. These techniques provide valuable new measurements that will improve geohazard assessments and should be deployed in a complementary manner alongside conventional geophysical tools.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017033
2017-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/nsg/15/4/nsg2017033.html?itemId=/content/journals/10.3997/1873-0604.2017033&mimeType=html&fmt=ahah

References

  1. ABPmer Ltd et al. 2010. A further review of sediment monitoring data.Commissioned by COWRIE Ltd (project reference ScourSed‐09).
    [Google Scholar]
  2. AlahbabiM.N., ChoY.T. and NewsonT.P.2006. Long‐range distributed temperature and strain optical fibre sensor based on the coherent detection of spontaneous Brillouin scattering with in‐line Raman amplification.Measurement Science and Technology17(5), 1082–1090.
    [Google Scholar]
  3. AyranciK., LinternD.G., HillP.R. and DashtgardS.E.2012. Tide‐supported gravity flows on the upper delta front, Fraser River delta, Canada.Marine Geology326, 166–170.
    [Google Scholar]
  4. BelalM. and NewsonT.P.2010. Enhanced performance of a temperature‐compensated submeter spatial resolution distributed strain sensor.IEEE Photonics Technology Letters22(23), 1705–1707.
    [Google Scholar]
  5. BelalM. and NewsonT.P.2012. Experimental examination of the variation of spontaneous Brillouin power and frequency coefficients under the combined influence of temperature and strain.Journal of Lightwave Technology99, 1250–1255
    [Google Scholar]
  6. BennettR.H., BurnsJ.T., ClarkeT.L., FarisJ.R., FordeE.B. and RichardsA.F.1982. Piezometer probes for assessing effective stress and stability in submarine sediments. In: Marine Slides and Other Mass Movements, pp. 129–161. SpringerUS.
    [Google Scholar]
  7. BesioG., BlondeauxP., BrocchiniM. and VittoriG.2003. Migrating sand waves.Ocean Dynamics53(3), 232–238.
    [Google Scholar]
  8. BesioG., BlondeauxP., BrocchiniM., HulscherS.J.M.H., IdierD., KnaapenM.A.F. et al. 2008. The morphodynamics of tidal sand waves: a model overview.Coastal Engineering55(7), 657–670.
    [Google Scholar]
  9. BiscaraL., HanquiezV., LeynaudD., MarieuV., MulderT., GallissairesJ.M. et al. 2012. Submarine slide initiation and evolution offshore Pointe Odden, Gabon—Analysis from annual bathymetric data (2004–2009).Marine Geology299, 43–50.
    [Google Scholar]
  10. BlackfordJ., StahlH., BullJ.M., BergèsB.J.P., CevatogluM., LichtschlagA. et al. 2014. Detection and impacts of leakage from sub‐seafloor deep geological carbon dioxide storage.Nature Climate Change4(11), 1011–1016.
    [Google Scholar]
  11. BlumJ.A., NoonerS.L. and ZumbergeM.A.2008. Recording Earth strain with optical fibers.IEEE Sensors Journal8(7), 1152–1160.
    [Google Scholar]
  12. BlumJ.A., ChadwellC.D., DriscollN. and ZumbergeM.A.2010. Assessing slope stability in the Santa Barbara Basin, California, using seafloor geodesy and CHIRP seismic data.Geophysical Research Letters37(13).
    [Google Scholar]
  13. BruschiR., BughiS., SpinazzèM., TorsellettiE. and VitaliL.2006. Impact of debris flows and turbidity currents on seafloor structures.Norsk Geologisk Tidsskrift86(3), 317.
    [Google Scholar]
  14. BornholdB.D., RenP. and PriorD.B.1994. High‐frequency turbidity currents in British Columbia fjords.Geo‐Marine Letters14(4), 238–243.
    [Google Scholar]
  15. BurtinA., CattinR., BollingerL., VergneJ., SteerP., RobertA. et al. 2011. Towards the hydrologic and bed load monitoring from high‐frequency seismic noise in a braided river: The “torrent de St Pierre”, French Alps.Journal of Hydrology408(1), 43–53.
    [Google Scholar]
  16. CampbellK.J.1999. Deepwater geohazards: how significant are they?The Leading Edge18(4), 514–519.
    [Google Scholar]
  17. CampbellK.J., KinnearS. and ThameA.2015. AUV technology for seabed characterization and geohazards assessment.The Leading Edge34(2), 170–178.
    [Google Scholar]
  18. Caplan‐AuerbachJ., DziakR.P., BohnenstiehlD.R., ChadwickW.W. and LauT.K.2014. Hydroacoustic investigation of submarine landslides at West Mata volcano, Lau Basin.Geophysical Research Letters41(16), 5927–5934.
    [Google Scholar]
  19. CarterL., BurnettD., DrewS., HagadornL., MarleG., Bartlett‐McNeilD. et al. 2009. Submarine cables and the oceans—Connecting the world.UNEP‐WCMC Biodiversity Series31. ICPC/UNEP/UNEP‐WCMC (64pp.).
    [Google Scholar]
  20. CarterL., GaveyR., TallingP. and LiuJ.2014. Insights into submarine geohazards from breaks in subsea telecommunication cables.Oceanography27(2), 58–67.
    [Google Scholar]
  21. CarterL., MillimanJ.D., TallingP.J., GaveyR. and WynnR.B.2012. Near‐synchronous and delayed initiation of long run‐out submarine sediment flows from a record‐breaking river flood, offshore Taiwan.Geophysical Research Letters39(12).
    [Google Scholar]
  22. ChillarigeA.V., MorgensternN.R., RobertsonP.K. and ChristianH.A.1997. Seabed instability due to flow liquefaction in the Fraser River delta.Canadian Geotechnical Journal34(4), 520–533.
    [Google Scholar]
  23. ClareM.A., ThomasS., MansourM. and CartignyM.E.2015a. Turbidity current hazard assessment for field layout planning.Proceedings of the Third International Symposium on Frontiers in Offshore Geotechnics, Perth, Australia, June 2015.
    [Google Scholar]
  24. ClareM.A., CartignyM.J.B., NorthL.J., TallingP.J., VardyM.E., HizzettJ.L. et al. 2015b. Quantification of near‐bed dense layers and implications for seafloor structures: new insights into the most hazardous aspects of turbidity currents.Proceedings of the Offshore Technology Conference.
    [Google Scholar]
  25. ClareM.A., Hughes ClarkeJ.E., TallingP.J., CartignyM.J.B. and PratomoD.G.2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord‐head delta.Earth and Planetary Science Letters450, 208–220.
    [Google Scholar]
  26. ConwayK.W., BarrieJ.V., PicardK. and BornholdB.D.2012. Submarine channel evolution: active channels in fjords, British Columbia, Canada.Geo‐Marine Letters32(4), 301–312.
    [Google Scholar]
  27. CooperC., WoodJ. and AndrieuxO.2013. Turbidity current measurements in the Congo Canyon.Proceedings of Offshore Technology Conference, Houston, TX, May 1–4, 2013.
    [Google Scholar]
  28. CorbettD.R., WalshJ.P., HarrisC.K., OgstonA.S. and OrpinA.R.2014. Formation and preservation of sedimentary strata from coastal events: insights from measurements and modeling.Continental Shelf Research86, 1–5.
    [Google Scholar]
  29. DaiZ.Y., LiuY., ZhangL.X., OuZ.H., ZhouC. and LiuY.Z.2008. Landslide monitoring based on high‐resolution distributed fiber optic stress sensor.Optical Fiber Sensors Conference. APOS’08. 1st Asia‐Pacific, pp. 1–4).
    [Google Scholar]
  30. DanG., SultanN. and SavoyeB.2007. The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling.Marine Geology245(1), 40–64.
    [Google Scholar]
  31. DelaneyJ.R. and KelleyD.S.2015. Next‐generation science in the ocean basins: expanding the oceanographer’s toolbox utilizing submarine electro‐optical sensor networks. In: Seafloor Observatories, pp. 465–502. Springer Berlin Heidelberg.
    [Google Scholar]
  32. EmeanaC.J., HughesT.J., DixJ.K., GernonT.M., HenstockT.J., ThompsonC.E.L. et al. 2016. The thermal regime around buried submarine high voltage cables.Geophysical Journal International.
    [Google Scholar]
  33. EvansT.G.2010. A systematic approach to offshore engineering for multiple‐project developments in geohazardous areas. In: Frontiers in Offshore Geotechnics II, pp. 3–32. London, UK: CRC Press.
    [Google Scholar]
  34. FavaliP. and BeranzoliL.2006. Seafloor observatory science: a review.Annals of Geophysics49(2–3).
    [Google Scholar]
  35. FavaliP., BeranzoliL. and De SantisA.2015. Seafloor observatories: a new vision of the Earth from the abyss.Springer Science and Business Media.
    [Google Scholar]
  36. ForsbergC.F., HeyerdahlH. and SolheimA.2016. Underwater mass movements in lake Mjøsa, Norway. In: Submarine Mass Movements and Their Consequences, pp. 191–199. Springer International Publishing.
    [Google Scholar]
  37. FoxC.G., ChadwickW.W. and EmbleyR.W.1992. Detection of changes in ridge‐crest morphology using repeated multibeam sonar surveys.Journal of Geophysical Research: Solid Earth97(B7), 11149–11162.
    [Google Scholar]
  38. GafeiraJ., LongD. and Diaz‐DoceD.2012. Semi‐automated characterisation of seabed pockmarks in the central North Sea.Near Surface Geophysics10(4), 303–314.
    [Google Scholar]
  39. GartnerJ.W.2004. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California.Marine Geology211(3), 169–187.
    [Google Scholar]
  40. GaveyR., CarterL., LiuJ.T., TallingP.J., HsuR., PopeE. et al. 2016. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: observations from subsea cable breaks off southern Taiwan.Marine Geology.
    [Google Scholar]
  41. GrayT., DinglerJ. and WoodG.2013. Multiscale seabed seepage manifestations in the South Caspian Basin, Azerbaijan.Offshore Technology Conference.
    [Google Scholar]
  42. GriffithsG. and FlattD.1987. A self‐contained acoustic Doppler current profiler—design and operation.Fifth International Conference on Electronics for Ocean Technology, Heriot‐Watt University, Edinburgh, pp. 41–47.
    [Google Scholar]
  43. GutowskiG., Bull, J.M., DixJ., HenstockT., HogarthP., WhiteP. et al. 2002. Chirp sub‐bottom profiler source signature design and field testing.Marine Geophysical Researches23, 481–492.
    [Google Scholar]
  44. HaflidasonH., LienR., SejrupH.P., ForsbergC.F. and BrynP.2005. The dating and morphometry of the Storegga Slide.Marine and Petroleum Geology22(1), 123–136.
    [Google Scholar]
  45. HageS., CartignyM., ClareM., TallingP., SumnerE., VardyM. et al. 2016. A multi‐instrument approach to monitoring turbidity currents: case study from the Squamish Delta, British Columbia (Canada). In: EGU General Assembly Conference Abstracts, Vol. 18, p. 13038.
    [Google Scholar]
  46. HarrisJ., WhitehouseR., ToddD., GunnI. and LewisR.2016. Analysing scour interaction between submarine pipelines, valve stations and mechanical protection structures.Proceedings Offshore Technology Conference, Houston, TX, May 2–5, 2016. Paper OTC‐27289‐MS.
    [Google Scholar]
  47. HartJ.K. and MartinezK.2006. Environmental sensor networks: a revolution in the earth system science?Earth‐Science Reviews78(3), 177–191.
    [Google Scholar]
  48. HauswirthD., PuzrinA.M., CarreraA., StandingJ.R. and WanM.S.P.2014. Use of fibre‐optic sensors for simple assessment of ground surface displacements during tunnelling.Geotechnique64(10), 837–842.
    [Google Scholar]
  49. HeeschenK.U., TréhuA.M., CollierR.W., SuessE. and RehderG.2003. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging.Geophysical Research Letters30(12).
    [Google Scholar]
  50. HeezenB.C. and EwingM.1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake.American Journal of Science250(12), 849–873.
    [Google Scholar]
  51. HickinE.J.1989. Contemporary Squamish River sediment flux to Howe Sound, British Columbia.Canadian Journal of Earth Sciences26(10), 1953–1963.
    [Google Scholar]
  52. HillA.J., SouthgateJ.G., FishP.R. and ThomasS.2011. Deepwater Angola part I: Geohazard mitigation.Frontiers in Offshore Geotechnics II, 209–214.
    [Google Scholar]
  53. HiscottR.N., AksuA.E., FloodR.D., KostylevV. and YaşarD.2013. Widespread overspill from a saline density‐current channel and its interaction with topography on the south‐west Black Sea shelf.Sedimentology60(7), 1639–1667.
    [Google Scholar]
  54. HoldawayG.P., ThorneP.D., FlattD., JonesS.E. and PrandleD.1999. Comparison between ADCP and transmissometer measurements of suspended sediment concentration.Continental Shelf Research19(3), 421–441.
    [Google Scholar]
  55. HovlandM., GardnerJ.V. and JuddA.G.2002. The significance of pock‐marks to understanding fluid flow processes and geohazards.Geofluids2(2), 127–136.
    [Google Scholar]
  56. Hughes ClarkeJ.E.2016. First wide‐angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics.Nature Communications7, 11896.
    [Google Scholar]
  57. Hughes ClarkeJ.E.2012. Optimal use of multibeam technology in the study of shelf morphodynamics. In: Sediments, Morphology and Sedimentary Processes on Continental Shelves: Advances in Technologies, Research and Applications.International Association of Sedimentologists Special Publication44, 3–28.
    [Google Scholar]
  58. Hughes ClarkeJ.E., BruckerS., MuggahJ., HamiltonT., CartwrightD., ChurchI. et al. 2012. Temporal progression and spatial extent of mass wasting events on the Squamish prodelta slope. In: Landslides and Engineered Slopes: Protecting Society Through Improved sUnderstanding, 1091–1096.
    [Google Scholar]
  59. Hughes ClarkeJ.E., MarquesC.R.V. and PratomoD.2014. Imaging active mass‐wasting and sediment flows on a fjord delta, Squamish, British Columbia. In: Submarine Mass Movements and Their Consequences, pp. 249–260. Springer International Publishing.
    [Google Scholar]
  60. InaudiD. and GlisicB.2007. The 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, Canada, November 13–16, 2007.
    [Google Scholar]
  61. InmanD.L., NordstromC.E. and FlickR.E.1976. Currents in submarine canyons: an air‐sea‐land interaction.Annual Review of Fluid Mechanics8(1), 275–310.
    [Google Scholar]
  62. JonesD.O., WallsA., ClareM., FiskeM.S., WeilandR.J., O’BrienR. et al. 2014. Asphalt mounds and associated biota on the Angolan margin.Deep Sea Research Part I: Oceanographic Research Papers94, 124–136.
    [Google Scholar]
  63. KaiserM.J., YuY. and JablonowskiC.J.2009. Modeling lost production from destroyed platforms in the 2004–2005 Gulf of Mexico hurricane seasons.Energy34(9), 1156–1171.
    [Google Scholar]
  64. KelnerM., MigeonS., TricE., CouboulexF., DanoA., LebourgT. et al. 2016. Frequency and triggering of small‐scale submarine landslides on decadal timescales: analysis of 4D bathymetric data from the continental slope offshore Nice (France).Marine Geology379, 281–297.
    [Google Scholar]
  65. KelleyD.S., DelaneyJ.R. and JuniperS.K.2014. Establishing a new era of submarine volcanic observatories: cabling axial seamount and the endeavour segment of the Juan de Fuca Ridge.Marine Geology352, 426–450.
    [Google Scholar]
  66. KhripounoffA., VangriesheimA., BabonneauN., CrassousP., DennielouB. and SavoyeB.2003. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth.Marine Geology194(3), 151–158.
    [Google Scholar]
  67. KostaschukR., BestJ., VillardP., PeakallJ. and FranklinM.2005. Measuring flow velocity and sediment transport with an acoustic Doppler current profiler.Geomorphology68(1), 25–37.
    [Google Scholar]
  68. KvalstadT.J., NadimF., KayniaA.M., MokkelbostK.H. and BrynP.2005. Soil conditions and slope stability in the Ormen Lange area.Marine and Petroleum Geology22(1), 299–310.
    [Google Scholar]
  69. LaBonteA.L., BrownK.M. and TryonM.D.2007. Monitoring periodic and episodic flow events at Monterey Bay seeps using a new optical flow meter.Journal of Geophysical Research: Solid Earth112(B2).
    [Google Scholar]
  70. LaneS.N., RichardsK.S. and ChandlerJ.H.1994. Developments in monitoring and modelling small‐scale river bed topography.Earth Surface Processes and Landforms19(4), 349–368.
    [Google Scholar]
  71. LinC.H., KumagaiH., AndoM. and ShinT.C.2010. Detection of landslides and submarine slumps using broadband seismic networks.Geophysical Research Letters37(22).
    [Google Scholar]
  72. LinternD.G. and HillP.R.2010. An underwater laboratory at the Fraser River delta.Eos, Transactions American Geophysical Union91 (38), 333–334.
    [Google Scholar]
  73. LinternD.G., HillP.R. and StaceyC.2016. Powerful unconfined turbidity current captured by cabled observatory on the Fraser River delta slope, British Columbia, Canada.Sedimentology.
    [Google Scholar]
  74. MartinezK., HartJ.K. and OngR.2004. Environmental sensor networks.Computer37(8), 50–56.
    [Google Scholar]
  75. MasoudiA., BelalM. and NewsonT.P.2013. A distributed optical fibre dynamic strain sensor based on phase‐OTDR.Measurement Science and Technology, 24(8), 085204.
    [Google Scholar]
  76. MastbergenD., van den HamG., CartignyM., KoelewijnA., de KleineM., ClareM. et al. 2016. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands. In: Submarine Mass Movements and Their Consequences, pp. 241–249. Springer International Publishing.
    [Google Scholar]
  77. McHughC.M., KanamatsuT., SeeberL., BoppR., CormierM.H. and UsamiK.2016. Remobilization of surficial slope sediment triggered by the AD 2011 Mw 9 Tohoku‐Oki earthquake and tsunami along the Japan Trench.Geology44(5), 391–394.
    [Google Scholar]
  78. MoernautJ., Van DaeleM., StrasserM., ClareM.A., HeirmanK., VielM. et al. 2015. Lacustrine turbidites produced by surficial slope sediment remobilization: a mechanism for continuous and sensitive turbid‐ite paleoseismic records.Marine Geology.
    [Google Scholar]
  79. MosherD.C., MoscardelliL., ShippR.C., ChaytorJ.D., BaxterC.D., LeeH.J. et al. 2010. Submarine Mass Movements and Their Consequences, pp. 1–8. Springer Netherlands.
    [Google Scholar]
  80. MossJ.L., CartwrightJ., CartwrightA. and MooreR.2012. The spatial pattern and drainage cell characteristics of a pockmark field, Nile Deep Sea Fan.Marine and Petroleum Geology35(1), 321–336.
    [Google Scholar]
  81. NimblettJ.N., ShippR.C. and StrijbosF.2005. Gas hydrate as a drilling hazard: examples from global deepwater settings.Offshore Technology Conference.
    [Google Scholar]
  82. ParkerE.J., TraversoC., Del GiudiceT., EvansT. and MooreR.2009. Geohazard risk assessment‐vulnerability of subsea structures to geo‐hazards‐risk implications.Offshore Technology Conference.
    [Google Scholar]
  83. PaullC.K., UsslerIIIW., CaressD.W., LundstenE., CovaultJ.A., MaierK.L. et al. 2010a. Origins of large crescent‐shaped bedforms within the axial channel of Monterey Canyon, offshore California.Geosphere6(6), 755–774.
    [Google Scholar]
  84. PiperD.J., CochonatP. and MorrisonM.L.1999. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar.Sedimentology46(1), 79–97.
    [Google Scholar]
  85. PopeE.L., TallingP.J. and CarterL.2016. Which earthquakes trigger damaging submarine mass movements: insights from a global record of submarine cable breaks?Marine Geology.
    [Google Scholar]
  86. PopeE., TallingP.J., CarterL., ClareM.A. and HuntJ.E.2017. Damaging sediment density flows triggered by tropical cyclones.Earth and Planetary Science Letters.
    [Google Scholar]
  87. PriorD.B. and SuhaydaJ.N.1979. Application of infinite slope analysis to subaqueous sediment instability, Mississippi Delta.Engineering Geology14(1), 1–10.
    [Google Scholar]
  88. PriorD.B., BornholdB.D., WisemanJrW.J. and LoweD.R.1987. Turbidity current activity in a British Columbia fjord.Science237, 1330–1334.
    [Google Scholar]
  89. ReichelG. and NachtnebelH.P.1994. Suspended sediment monitoring in a fluvial environment: advantages and limitations applying an acoustic Doppler current profiler.Water Research28(4), 751–761.
    [Google Scholar]
  90. RennieC.D., MillarR.G. and ChurchM.A.2002. Measurement of bed load velocity using an acoustic Doppler current profiler.Journal of Hydraulic Engineering128(5), 473–483.
    [Google Scholar]
  91. RichardsA.F., ØtenK., KellerG.H. and LaiJ.Y.1975. Differential piezometer probe for an in situ measurement of sea‐floor.Geotechnique25(2), 229–238.
    [Google Scholar]
  92. RDI Instruments.2015. Glossary, accessed from RDI Instruments website: Accessed 28 January 2015 [Available at http://www.rdinstruments.com/glossary.aspx].
  93. SchlabergH.I., BaasJ.H., WangM., BestJ.L., WilliamsR.A. and PeakallJ.2006. Electrical resistance tomography for suspended sediment measurements in open channel flows using a novel sensor design.Particle and Particle Systems Characterization23(3)‐(4), 313–320.
    [Google Scholar]
  94. SchimelA.C., IerodiaconouD., HulandsL. and KennedyD.M.2015. Accounting for uncertainty in volumes of seabed change measured with repeat multibeam sonar surveys.Continental Shelf Research111, 52–68.
    [Google Scholar]
  95. SchockG. and LeBlancL.R.1990. Chirp xonar: new technology for sub‐bottom profiling.Sea Technology31(9), 35–43.
    [Google Scholar]
  96. SelkerJ.S., ThevenazL., HwaldH., MalletA., LuxemburgW., van de GiesenN. et al. 2006. Distributed fiber‐optic temperature sensing for hydrologic systems.Water Resources Research42, W12202.
    [Google Scholar]
  97. SgroiT., MonnaS., EmbriacoD., GiovanettiG., MarinaroG. and FavaliP.2014. Geohazards in the Western Ionian Sea.Oceanography27(2), 154.
    [Google Scholar]
  98. SkogdalenJ.E. and VinnemJ.E.2012. Quantitative risk analysis of oil and gas drilling, using Deepwater Horizon as case study.Reliability Engineering and System Safety100, 58–66.
    [Google Scholar]
  99. SkvortsovA. and BornholdB.2007. Numerical simulation of the landslide‐generated tsunami in Kitimat Arm, British Columbia, Canada, 27 April 1975.Journal of Geophysical Research: Earth Surface112(F2).
    [Google Scholar]
  100. SleathJ.F.A.1991. Velocities and concentrations in oscillatory flow over beds of sediment.Journal of Fluid Mechanics233, 165–196.
    [Google Scholar]
  101. SmithD.P., KvitekR., IampietroP.J. and WongK.2007. Twenty‐nine months of geomorphic change in upper Monterey Canyon (2002–2005).Marine Geology236(1), 79–94.
    [Google Scholar]
  102. SoubarasR. and DowleR.2010. Variable‐depth streamer—A broadband marine solution.First Break28(12).
    [Google Scholar]
  103. SpinewineB., RensonnetD., ClareM., CapartH., De ThierT. and Dan‐untersehG.2013. Numerical modelling of runout and velocity for slide‐induced submarine density flows: a building block of an integrated geohazards assessment for deepwater developments.Offshore Technology Conference.
    [Google Scholar]
  104. StegmannS., SultanN., KopfA., ApprioualR. and PelleauP.2011. Hydrogeology and its effect on slope stability along the coastal aquifer of Nice, France.Marine Geology280(1), 168–181.
    [Google Scholar]
  105. StroutJ.M. and TjeltaT.I.2005. In situ pore pressures: what is their significance and how can they be reliably measured?Marine and Petroleum Geology22(1), 275–285.
    [Google Scholar]
  106. SullivanC.2015. Researchers track underwater avalanches like never before.Eos96.
    [Google Scholar]
  107. SultanN., CochonatP., CanalsM., CattaneoA., DennielouB., HaflidasonH. et al. 2004. Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach.Marine Geology213(1), 291–321.
    [Google Scholar]
  108. Sumner, E.J. and PaullC.K.2014. Swept away by a turbidity current in Mendocino submarine canyon, California.Geophysical Research Letters41(21), 7611–7618.
    [Google Scholar]
  109. SyahnurY. and JayaK.A.2016. Geomatics best practices in Saka Indonesia Pangkah Limited (Case Study: Ujung Pangkah Pipeline Integrity).2015 Indonesian Petroleum Association Convention.
    [Google Scholar]
  110. SymonsW.O., SumnerE.J., PaullC.K., CartignyM.J.B., XuJ.P., MaierK.L. et al. 2017. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon.Geology45(4), 367–370.
    [Google Scholar]
  111. TallingP.J., WynnR.B., MassonD.G., FrenzM., CroninB.T., SchiebelR. et al. 2007. Onset of submarine debris flow deposition far from original giant landslide.Nature450(7169), 541–544.
    [Google Scholar]
  112. TallingP.J., PaullC.K. and PiperD.J.2013. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows.Earth‐Science Reviews125, 244–287.
    [Google Scholar]
  113. TallingP., ClareM., UrlaubM., PopeE., HuntJ. and WattS.2014. Large submarine landslides on continental slopes: geohazards, methane release, and climate change.Oceanography27(2), 32–45.
    [Google Scholar]
  114. TallingP.J., AllinJ., ArmitageD.A., ArnottR.W.C., CartignyM.J.B., ClareM.A. et al. 2015. Key future directions for research on turbidity currents and their deposits.Journal of Sedimentary Research85(2), 153–169.
    [Google Scholar]
  115. ThomasS., HooperJ. and ClareM.2010. Constraining geohazards to the past: impact assessment of submarine mass movements on seabed developments. In: Submarine Mass Movements and Their Consequences, pp. 387–398. Springer Netherlands.
    [Google Scholar]
  116. ThomasS., HillA.J., ClareM.A., ShreeveJ.W. and UntersehS.2011. Understanding engineering challenges posed by natural hydrocarbon infiltration and the development of Authigenic Carbonate.Offshore Technology Conference.
    [Google Scholar]
  117. ThorneP.D., HardcastleP.J. and SoulsbyR.L.1993. Analysis of acoustic measurements of suspended sediments.Journal of Geophysical Research: Oceans98(C1), 899–910.
    [Google Scholar]
  118. TomJ., DraperS., WhiteD. and O’NeillM.2016. Risk‐based assessment of scour around subsea infrastructure.Proceedings of the Offshore Technology Conference.
    [Google Scholar]
  119. Van LanckerV. and BaeyeM.2015. Wave glider monitoring of sediment transport and dredge plumes in a shallow marine sandbank environment.PLOS ONE10(6), e0128948.
    [Google Scholar]
  120. VannesteM., SultanN., GarzigliaS., ForsbergC.F. and L’HeureuxJ.S.2014. Seafloor instabilities and sediment deformation processes: the need for integrated, multi‐disciplinary investigations.Marine Geology352, 183–214.
    [Google Scholar]
  121. VardyM.E.2015. Deriving shallow‐water sediment properties using post‐stack acoustic impedance inversion.Near Surface Geophysics13(2), 143–154.
    [Google Scholar]
  122. VardyM.E., DixJ.K., HenstockT.J., BullJ.M. and GutowskiM.2008. Decimeter‐resolution 3D seismic volume in shallow water: a case study in small‐object detection.Geophysics73(2), B33–B40.
    [Google Scholar]
  123. VardyM.E., L’HeureuxJ.S., VannesteM., LongvaO., SteinerA., ForsbergC.F. et al. 2012. Multidisciplinary investigation of a shallow near‐shore landslide, Finneidfjord, Norway.Near Surface Geophysics10(4), 267–277.
    [Google Scholar]
  124. VardyM.E., VannesteM., HenstockT.J., ClareM.A., ForsbergF. and ProvenzanoG.2017. State of the art remote characterisation of shallow marine sediments: the road to a fully integrated solution.Near Surface Geophysics.
    [Google Scholar]
  125. VelosoM., GrienertJ., MienertmJ. and De BatistM. 2015. A new methodology for quantifying bubble flow rates in deep water using split‐beam echosounders: examples from the Arctic offshore NW‐Svalbard.Limnology and Oceanography: Methods13 (2015), 267–287.
    [Google Scholar]
  126. Von DeimlingJ.S., BrockhoffJ. and GreinertJ.2007. Flare imaging with multibeam systems: Data processing for bubble detection at seeps.Geochemistry, Geophysics and Geosystems8(6).
    [Google Scholar]
  127. WheatonJ.M., BrasingtonJ., DarbyS.E. and SearD.A.2010. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets.Earth Surface Processes and Landforms35(2), 136–156.
    [Google Scholar]
  128. WhitehouseR.J., HarrisJ.M., SutherlandJ. and ReesJ.2011. The nature of scour development and scour protection at offshore windfarm foundations.Marine Pollution Bulletin62(1), 73–88.
    [Google Scholar]
  129. WilliamsJ., JaquetJ., ThomasR., SyersJ., ShuklaS., HarrisR. et al. 1988. Records of riverborne turbidity currents and indications of slope failures in the Rhone delta of Lake Geneva.Journal of Fisheries and Aquatic Science41, 1609–1617.
    [Google Scholar]
  130. WilsonT.C., LwizaK.M.M. and AllenG.L.1997. Oceans 97.MTS/IEEE Conference Proceedings, Halifax, Canada, October 6–9, 1997, 120–125.
    [Google Scholar]
  131. WynnR.B., HuvenneV.A., Le BasT.P., MurtonB.J., ConnellyD.P., BettB.J. et al. 2014. Autonomous underwater vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience.Marine Geology352, 451–468.
    [Google Scholar]
  132. XuJ.P., NobleM.A. and RosenfeldL.K.2004. In‐situ measurements of velocity structure within turbidity currents.Geophysical Research Letters31(9).
    [Google Scholar]
  133. XuJ.P.2010. Normalized velocity profiles of field‐measured turbidity currents.Geology38(6), 563–566.
    [Google Scholar]
  134. XuJ.2011. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years.Geosphere7, 868–876.
    [Google Scholar]
  135. XuJ.P., BarryJ.P. and PaullC.K.2013. Small‐scale turbidity currents in a big submarine canyon.Geology41(2), 143–146.
    [Google Scholar]
  136. XuJ.P., SequeirosO.E. and NobleM.A.2014. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA.Deep Sea Research Part I: Oceanographic Research Papers89, 11–34.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017033
Loading
/content/journals/10.3997/1873-0604.2017033
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error