1887
Volume 23, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Accurate palaeoenvironmental analysis is at the heart of producing reliable interpretations and depositional models. This study demonstrates a multivariate statistical approach to facies analysis based on relationships between grain size and quantitative palynology. Our methodology has the advantage that it can be used on small amounts of sample, such as core or well cuttings, as the basis for facies analysis.

Proof of concept studies involving the collection of grain-size and palynological datasets from well-exposed outcrops of the Middle Jurassic, Lajas Formation of the Neuquén Basin, Argentina, demonstrate that canonical correspondence analysis can be used to consistently recognize facies and aid in the determination of depositional environments. This study demonstrates the link between depositional facies, grain-size distribution, palynomorph hydrodynamics and assemblage taphonomy of palynomorphs. This knowledge can be transferred into a semi-automated statistical facies prediction technique for the subsurface in complex depositional settings, particularly when calibrated against conventional sedimentary facies analysis.

The full set of grain-size data and statistical scores are available at: https://doi.org/10.6084/m9.figshare.c.3745481.v1

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-073
2017-04-27
2024-04-20
Loading full text...

Full text loading...

References

  1. Brandsæter, I., McIlroy, D., Lia, O., Ringrose, P. & Næss, A.
    2005. Reservoir modelling and simulation of Lajas Formation outcrops (Argentina) to constrain tidal reservoirs of the Halten Terrace (Norway). Petroleum Geoscience, 11, 37–46, https://doi.org/10.1144/1354-079303-611
    [Google Scholar]
  2. Carvalho, M.D., Mendonca, J.G. & Menezes, T.R.
    2006. Paleoenvironmental reconstruction based on palynofacies analysis of the Aptian–Albian succession of the Sergipe Basin, Northeastern Brazil. Marine Micropaleontology, 59, 56–81.
    [Google Scholar]
  3. Dale, B., Dale, A.L. & Prine, I.
    2005. Statistical modeling of ecological signals: a new method for biostratigraphy. In: Powell, A.J. & Riding, J.B. (eds) Recent Developments in Applied Biostratigraphy. The Micropalaeontological Society, Special Publications. Geological Society, London, 179–203.
    [Google Scholar]
  4. Friedman, G.M.
    1962. On sorting, sorting coefficients, and the lognormality of the grain-size distribution of sandstones. The Journal of Geology, 70, 737–753.
    [Google Scholar]
  5. Gradstein, F.M., Ogg, J.G. & Smith, A.
    2004. Geologic Time Scale 2004. Cambridge University Press, New York.
    [Google Scholar]
  6. Gugliotta, M., Flint, S.S., Hodgson, D.M. & Veiga, G.D.
    2015. Stratigraphic record of river-dominated crevasse subdeltas with tidal influence (Lajas Formation, Argentina). Journal of Sedimentary Research, 85, 265–284.
    [Google Scholar]
  7. Howell, J.A., Schwarz, E., Spalletti, L. & Veiga, G.D.
    (eds) 2005. The Neuquén Basin: an overview. In:The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society, London, Special Publications, 252, 1–14, https://doi.org/10.1144/GSL.SP.2005.252.01.01
    [Google Scholar]
  8. Ichaso, A.A. & Dalrymple, R.W.
    2009. Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology, 37, 539–542.
    [Google Scholar]
  9. Inman, D.L.
    1952. Measures for describing the size distribution of sediments. Journal of Sedimentary Research, 22, 125–145.
    [Google Scholar]
  10. Kovach, W.L.
    1993. Multivariate techniques for biostratigraphical correlation. Journal of the Geological Society, London, 150, 697–705, https://doi.org/10.1144/gsjgs.150.4.0697
    [Google Scholar]
  11. Martinius, A.W., Kaas, I., Næss, A., Helgesen, G., Kjærefjord, J.M. & Leith, D.A.
    2000. Sedimentology of the heterolithic and tide-dominated Tilje Formation (Early Jurassic, Halten Terrace, offshore mid-Norway). In: Martinsen, O.J. & Dreyer, T. (eds) Sedimentary Environments Offshore Norway – Paleozoic to Recent. Norwegian Petroleum Society, Special Publications, 9, 103–144.
    [Google Scholar]
  12. Martinius, A.W., Berg, J.H. & Buller, A.T.
    2011. Atlas of Sedimentary Structures in Estuarine and Tidally-influenced River Deposits of the Rhine–Meuse–Scheldt System: Their Application to the Interpretation of Analogous Outcrop and Subsurface Depositional Systems. EAGE Publications, Houten, The Netherlands.
    [Google Scholar]
  13. Maxwell, G., Hartley, A.J. & Crane, J.
    1999. High resolution zonation within a tide-dominated deltaic reservoir: The Middle Jurassic Beryl Formation, Beryl Field, U.K.C.S. In: Fleet, A.J. & Boldy, S.A.R. (eds) Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference. Geological Society, London, Petroleum Geology Conference Series, 5, 1187–1198, https://doi.org/10.1144/10.1144/0051187
    [Google Scholar]
  14. McIlroy, D.
    2004. Ichnofabrics and sedimentary facies of a tide-dominated delta: Jurassic Ile Formation of Kristin Field, Haltenbanken, Offshore Mid-Norway. In: McIlroy, D. (ed.) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society, London, Special Publications, 228, 237–272, https://doi.org/10.1144/GSL.SP.2004.228.01.12
    [Google Scholar]
  15. 2007. Palaeoenvironmental controls on the ichnology of tide-influenced facies with an example from a macrotidal tide-dominated deltaic depositional system, Lajas Formation, Neuquén Province, Argentina. In: Bromley, R.G., Buatois, L.A. , Mángano, G., Genise, J.F. & Melchor, R.N. (eds) Sediment–Organism Interactions: A Multifaceted Ichnology. SEPM (Society for Sedimentary Geology), Special Publications, 88, 195–213.
    [Google Scholar]
  16. 2008. Ichnological analysis: the common ground between ichnofacies workers and ichnofabric analysts. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 332–338.
    [Google Scholar]
  17. McIlroy, D., Flint, S.S. & Howell, J.A.
    1999. Applications of high resolution sequence stratigraphy to reservoir prediction and flow unit definition in aggradational tidal successions. In: Hentz, T. (ed.) Advanced Reservoir Characterization for the 21st Century. GCSSEPM, Special Publications, 19, 121–132.
    [Google Scholar]
  18. McIlroy, D., Flint, S.S., Howell, J.A. & Timms, N.E.
    2005. Sedimentology of the tide-dominated Jurassic Lajas Formation, Neuquén Basin, Argentina. In: Veiga, G.D., Spalletti, L.A., Howell, J.A. & Schwarz, E. (eds) The Neuquén Basin, Argentina, A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society, London, Special Publications, 252, 83–107, https://doi.org/10.1144/GSL.SP.2005.252.01.05
    [Google Scholar]
  19. Morgans-Bell, H.S. & McIlroy, D.
    2005. Palaeoclimatic implications of Middle Jurassic (Bajocian) coniferous wood from the Neuquén Basin, west-central Argentina. In: Veiga, G.D., Spalletti, L.A., Howell, J.A. & Schwarz, E. (eds) The Neuquén Basin, Argentina, A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society, London, Special Publications, 252, 267–278, https://doi.org/10.1144/GSL.SP.2005.252.01.13
    [Google Scholar]
  20. Quattrocchio, M.E., Martínez, M.A. & Volkheimer, W.
    2007. Las floras Jurásicas de la Argentina [Jurassic floras of Argentina]. In: Archangelsky, S., Sánchez, T. & Tonni, E.P. (eds) Asociación Paleontológica Argentina: Ameghiniana 50° Aniversario. Asociación Paleontológica Argentina, Publicación Especial, 11, 87–100.
    [Google Scholar]
  21. Rossi, V.M. & Steel, R.J.
    2016. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63, 824–864.
    [Google Scholar]
  22. Salter, J., Murray, B.G. & Braggins, J.E.
    2002. Wettable and unsinkable: The hydrodynamics of saccate pollen grains in relation to the pollination mechanism in the two New Zealand species of Prumnopitys Phil. (Podocarpaceae). Annals of Botany, 89, 133–144.
    [Google Scholar]
  23. Stukins, S., Jolley, D.W., McIlroy, D. & Hartley, A.J.
    2013. Middle Jurassic vegetation dynamics from allochthonous palynological assemblages: an example from a marginal marine depositional setting; Lajas Formation, Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 117–127.
    [Google Scholar]
  24. Ter Braak, C.J.F.
    1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.
    [Google Scholar]
  25. Traverse, A.
    2008. Paleopalynology. 2nd edn.Springer, Dordrecht, The Netherlands.
    [Google Scholar]
  26. van Cappelle, M., Stukins, S., Hampson, G.J. & Johnson, H.D.
    2016. Fluvial to tidal transition in proximal, mixed tide-influenced and wave-influenced deltaic deposits: Cretaceous lower Sego Sandstone, Utah, USA. Sedimentology, 63, 1333–1361.
    [Google Scholar]
  27. Zavala, C.
    1996. Sequence stratigraphy in continental to marine transitions. An example from the Middle Jurassic Cuyo Group, south Neuquén Basin, Argentina. GeoResearch Forum, 1–2, 285–293.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-073
Loading
/content/journals/10.1144/petgeo2016-073
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error