1887
Volume 23, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The hydrocarbon source rock potential of shales from the Oligocene–Early Miocene Dingqinghu Formation was evaluated using organic geochemistry (Rock-Eval pyrolysis, total organic carbon (TOC) and bitumen extraction) and organic petrology. Forty-one outcrop samples from Lunbori and Jiangria Co shales in the Lunpola Basin were analysed.

At Lunbori, in the central part of the basin, the shales have very good source rock potential, and show TOC contents ranging from 3.72 to 11.2 wt%, with an average TOC value of 7.36 wt%, S values of 33.4 – 99.5 mg HC/g rock (average 61.8 mg HC/g rock), and extractable organic matter contents varying from 513 to 4525 ppm (average 2105 ppm). The shales have very good source rock potential. Rock-Eval values of 433 – 437°C (average 435°C) and high carbon preference index (CPI) values (4.76 – 6.70) indicate that the organic matter is immature to early mature for oil generation. The yellow fluorescence of kerogen under UV light is in good agreement with and CPI data. High hydrogen indices (HI) (635 – 1057 mg HC/g TOC) and H/C ratios (1.60 – 1.72) indicate that the Lunbori shales contain oil-prone organic matter and are characterized by high yellow fluorescing amorphous sapropelite content. The Lunbori shales contain a high content of hydrogen-rich Type II and minor Type I oil-prone kerogen, and have dominant medium to long molecular weight -alkanes (maximizing at C or C) with marked odd carbon number preference in the -C – -C range, pristine/phytane (Pr/Ph) ratios of 0.06 – 0.14, high phytane/-C ratios (10.95 – 30.63), abundant gammacerane (gammacerane/C hopane: 0.44 – 1.80), and predominant regular sterane C. These data indicate deposition in stratified, anoxic and saline depositional conditions with a kerogen predominatly formed from a lacustrine biota.

The Jiangria Co shales in the western part of the Lunpola Basin contain some hydrogen-rich Type I and II oil-prone kerogens at a marginally mature level. They have TOC contents of up to 2.62 wt%, S values of up to 17.2 mg HC/g rock and extractable organic matter contents of up to 1731 ppm, indicating good source rock potential for oil generation. This is supported by their high HI values (420 – 720 mg HC/g TOC) and H/C ratios (1.05 – 1.50). The biomarker distributions of the extracts are characterized by odd carbon number predominance (C–C), low Pr/Ph ratios (0.05 – 0.09), high concentrations of phytane and high gammacerane content, indicating lacustrine reducing and saline conditions.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2015-062
2017-04-27
2024-03-29
Loading full text...

Full text loading...

References

  1. Allard, B. & Templier, J.
    2000. Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry, 54, 369–380.
    [Google Scholar]
  2. Bishop, A.N., Love, G.D., Mcaulay, A.D., Snape, C.E. & Farrimond, P.
    1998. Release of kerogen-bound hopanoids by hydropyrolysis. Organic Geochemistry, 29, 989–1001.
    [Google Scholar]
  3. Bordenave, M.L.
    1993. Applied Petroleum Geochemistry. Editions Technip, Paris.
    [Google Scholar]
  4. Chang, Y.J., Huang, W.L., Hsu, A. & Huang, S.Y.L.
    2008. Characterization of kerogens and coals using fluorescence measured in situ at elevated temperatures. International Journal of Coal Geology, 75, 63–75.
    [Google Scholar]
  5. Chen, L., Yi, H.S., Hu, R.Z., Zhong, H. & Zou, Y.R.
    2005. Organic geochemistry of the Early Jurassic oil shale from the Shuanghu area in northern Tibet and the Early Toarcian oceanic anoxic event. Acta Geologica Sinica (English Edition), 79, 392–397.
    [Google Scholar]
  6. Chung, S.L., Chu, M.F. et al.
    2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68, 173–196.
    [Google Scholar]
  7. Dai, J.G., Zhao, X.X., Wang, C.S., Zhu, L.D., Li, Y.L. & Finn, D.
    2012. The vast proto-Tibetan Plateau: New constraints from Paleogene Hoh Xil Basin. Gondwana Research, 22, 434–446.
    [Google Scholar]
  8. Decelles, P.G., Robinson, D.M. & Zandt, G.
    2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan plateau. Tectonics, 21, 1062, https://doi.org/10.1029/2001TC001322
    [Google Scholar]
  9. Decelles, P.G., Kapp, P., Ding, L. & Gehrels, G.E.
    2007. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geological Society of America Bulletin, 119, 654–680.
    [Google Scholar]
  10. Dembicki, H., Jr.
    2009. Three common source rock evaluation errors made by geologists during prospect or play appraisals. American Association of Petroleum Geologists Bulletin, 93, 341–356.
    [Google Scholar]
  11. Deng, T., Wang, S.Q., Xie, G.P., Li, Q., Hou, S.K. & Sun, B.Y.
    2012. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chinese Science Bulletin, 57, 261–269.
    [Google Scholar]
  12. Derenne, S., Largeau, C., Casadevall, E. & Connan, J.
    1988. Comparison of torbanites of various origins and evolutionary stages. Bacterial contribution to their formation. Causes of the lack of botryococcane in bitumens. Organic Geochemistry, 12, 43–59.
    [Google Scholar]
  13. Didyk, B.M., Simoneit, B.R.T., Brassell, S.C. & Eglinton, G.
    1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216–222.
    [Google Scholar]
  14. Ding, W.L., Wan, H., Zhang, Y.Q. & Han, G.Z.
    2013. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang Basin of Tibet. Journal of Asian Earth Sciences, 66, 63–72.
    [Google Scholar]
  15. Du, B.W., Tan, F.W. & Chen, M.
    2004. Sedimentary features and petroleum geology of the Lunpola Basin, Xizang. Sedimentary Geology and Tethyan Geology, 24, 46–54 [in Chinese with English abstract].
    [Google Scholar]
  16. Fu, X.G., Wang, J., Tan, F.W., Feng, X.L., Wang, D. & Song, C.Y.
    2012. Geochemistry of terrestrial oil shale from the Lunpola area, northern Tibet, China. International Journal of Coal Geology, 102, 1–11
    [Google Scholar]
  17. Fu, X.G., Wang, J., Tan, F.W., Feng, X.L., Wang, D. & He, J.L.
    2013. Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China. Energy Conversion and Management, 73, 186–194.
    [Google Scholar]
  18. Fu, X.G., Wang, J., Chen, W.B., Feng, X.L., Wang, D., Song, C.Y. & Zeng, S.Q.
    2015. Organic accumulation in lacustrine rift basin: constraints from mineralogical and multiple geochemical proxies. International Journal of Earth Sciences (Geologische Rundschau), 104, 495–511.
    [Google Scholar]
  19. Fu, X.Y. & Zhang, X.F.
    2005. Petroleum geological research in Tibet Plateau. Petroleum Industry Press, Beijing, 71–138 [in Chinese].
    [Google Scholar]
  20. Gelpi, E., Schneider, H., Mann, J. & Oró, J.
    1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9, 603–612.
    [Google Scholar]
  21. Gu, Y., Shao, Z.B., Ye, D.L., Zhang, X.Y. & Lu, Y.P.
    1999. Characteristics of source rocks and resource prospect in the Lunpola Basin, Tibet. Petroleum Geology & Experiment, 21, 340–345 [in Chinese with English abstract].
    [Google Scholar]
  22. Guo, Z.J., Li, Y.T., Nan, Z.B. & Ye, H.F.
    2008. Relationship between deformation structure and petroleum accumulation and preservation, Qiangtang Basin, Tibet. Petroleum Exploration and Development, 35, 563–568.
    [Google Scholar]
  23. Klemme, H. & Ulmishek, G.
    1991. Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. American Association of Petroleum Geologists Bulletin, 75, 1809–1851.
    [Google Scholar]
  24. Koopmans, M.P., Rijpstra, W.I.C., Klapwijk, M.M., de Leeuw, J.W., Lewan, M.D. & Sinninghe Damsté, J.S.
    1999. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Organic Geochemistry, 30, 1089–1104.
    [Google Scholar]
  25. Korkmaz, S. & Gülbay, R.K.
    2007. Organic geochemical characteristics and depositional environments of the Jurrassic coals in the eastern Taurus of Southern Turkey. International Journal of Coal Geology, 70, 292–304.
    [Google Scholar]
  26. Lei, Q.L., Fu, X.Y. & Lu, Y.P.
    1996. Petroleum geological features of Tertiary terrestrial Lunpola Basin, Xizang (Tibet). Earth Science – Journal China University Geosciences, 21, 168–173 [in Chinese with English abstract].
    [Google Scholar]
  27. Leyden, J.J., Wassenaar, L.I., Hobson, K.A. & Walker, E.G.
    2006. Stable hydrogen isotopes of bison bone collagen as a proxy for Holocene climate on the Northern Great Plains. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 87–99.
    [Google Scholar]
  28. Li, Y.L., Wang, C.S., Wu, X.H., Tao, X.F., Zhao, B. & Ma, R.Z.
    2005. Discovery of Upper Jurassic marine oil shale in the Tuonamu area, northern Tibet, China. Geological Bulletin of China, 24, 783–784 [in Chinese with English abstract].
    [Google Scholar]
  29. Long, X.P., Wilde, S.A. et al.
    2015. Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters, 414, 30–44.
    [Google Scholar]
  30. Ma, P.F., Wang, L.C., Wang, C.S., Wu, X.H. & Wei, Y.H.
    2015. Organic-matter accumulation of the lacustrine Lunpola oil shale, central Tibetan Plateau: Controlled by the paleoclimate, provenance, and drainage system. International Journal of Coal Geology, 147–148, 58–70.
    [Google Scholar]
  31. Mackenzie, A.S., Patience, R.L. & Maxwell, J.R.
    1980. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France – I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochimica et Cosmochimica Acta, 44, 1709–1721.
    [Google Scholar]
  32. Moldowan, J.M., Seifert, W.K. & Gallegos, E.J.
    1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69, 1255–1268.
    [Google Scholar]
  33. Molnar, P., England, P. & Martinod, J.
    1993. Mantle dynamics, the uplift of the Tibetan plateau, and the Indian monsoon. Reviews of Geophysics, 31, 357–396.
    [Google Scholar]
  34. Nelson, K.D., Zhao, W.J., Brown, L.D., Kuo, J., Che, J.K. et al.
    1996. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science, 274, 1684–1688.
    [Google Scholar]
  35. Ottenjann, K., Teichmialler, M. & Wolf, M.
    1975. Spectral fluorescence measurements of sporinites in reflected light and their applicability for coalification studies. In: Alpern, B. (ed.) Petrographie Organique et Potentiel Petrolier. CNRS, Paris, 46–65.
    [Google Scholar]
  36. Pacton, M., Gorin, G.E. & Vasconcelos, C.
    2011. Amorphous organic matter — Experimental data on formation and the role of microbes. Review of Palaeobotany and Palynology, 166, 253–267.
    [Google Scholar]
  37. Peters, K.E. & Moldowan, J.M.
    1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, NJ.
    [Google Scholar]
  38. Peters, K.E., Walters, C.C. & Moldowan, J.M.
    2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History. Cambridge University Press, Cambridge.
    [Google Scholar]
  39. Petersen, H.I., Tru, V., Nielsen, L.H., Duc, N.A. & Nytoft, H.P.
    2005. Source rock properties of lacustrine mudstones and coals (Oligocene Dong Ho Formation), onshore Song Hong Basin, northern Vietnam. Journal of Petroleum Geology, 28, 19–38.
    [Google Scholar]
  40. Qin, J.Z.
    2006. Study on the petroleum resource potential in the Qiangtang Basin, Qinghai-Tibet Plateau. Petroleum Geology and Experiment, 28, 566–573 [in Chinese with English abstract].
    [Google Scholar]
  41. Radke, M., Willsch, H. & Welte, D.H.
    1980. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Analytical Chemistry, 52, 406–411.
    [Google Scholar]
  42. Riboulleau, A., Schnyder, J., Riquier, L., Lefebvre, V., Baudin, F. & Deconinck, J.F.
    2007. Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay section (Dorset, Southern England): a biomarker approach. Organic Geochemistry, 38, 1804–1823.
    [Google Scholar]
  43. Sabel, M., Bechtel, A., Püttmann, W. & Hoernes, S.
    2005. Palaeoenvironment of the Eocene Eckfeld Maar lake (Germany): implications from geochemical analysis of the oil shale sequence. Organic Geochemistry, 36, 873–891.
    [Google Scholar]
  44. Samuel, O.J., Cornford, C., Jones, M., Adekeye, O.A. & Akande, S.O.
    2009. Improved understanding of the petroleum systems of the Niger Delta Basin, Nigeria. Organic Geochemistry, 40, 461–483.
    [Google Scholar]
  45. Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J., Schouten, S., Hayes, J.M. & De Leeuw, J.W.
    1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59, 1895–1900.
    [Google Scholar]
  46. Sun, T., Wang, C.S., Li, Y.L., Wang, L.C. & He, J.L.
    2013. Geochemical investigation of lacustrine oil shale in the Lunpola basin (Tibet): implications for paleoenvironment and paleoclimate. Oil Shale, 30, 101–116.
    [Google Scholar]
  47. Sun, T., Wang, C.S., Duan, Y., Li, Y.L. & Hu, B.
    2014. The organic geochemistry of the Eocene–Oligocene black shales from the Lunpola Basin, central Tibet. Journal of Asian Earth Sciences, 79, 468–476.
    [Google Scholar]
  48. Tian, B.S., Li, Z., Engram, M.J., Niu, F.J., Tang, P.P., Zou, P.F.
    &. Xu, J. 2015. Characterizing C-band backscattering from thermokarst lake ice on the Qinghai–Tibet Plateau. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 63–76.
    [Google Scholar]
  49. Tissot, B.P. & Welte, D.H.
    1978. Petroleum Formation and Occurrence. Springer, New York.
    [Google Scholar]
  50. 1984. Petroleum Formation and Occurrence. 2nd edn. Springer, New York.
    [Google Scholar]
  51. Tyson, R.V.
    2006. Calibration of hydrogen indices with microscopy: A review, reanalysis and new results using the fluorescence scale. Organic Geochemistry, 37, 45–63.
    [Google Scholar]
  52. Volkman, J.K. & Maxwell, J.R.
    1986. Acyclic isoprenoids as biological markers. Methods in Geochemistry and Geophysics, 24, 1–42.
    [Google Scholar]
  53. Wang, J., Tan, F.W. et al.
    2004. The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai-Xizang Plateau. Geological Publishing House, Beijing [in Chinese].
    [Google Scholar]
  54. Wang, J., Ding, J. et al.
    2009. Survey and Evaluation on Tibet Oil and Gas Resources. Geological Publishing House, Beijing [in Chinese].
    [Google Scholar]
  55. Wang, L.C., Wang, C.S., Li, Y.L., Zhu, L.D. & Wei, Y.S.
    2011. Sedimentary and organic geochemical investigation of tertiary lacustrine oil shale in the central Tibetan plateau: Palaeolimnological and palaeoclimatic significances. International Journal of Coal Geology, 86, 254–265.
    [Google Scholar]
  56. Xiong, Y.Q. & Geng, A.S.
    2000. Carbon isotopic composition of individual n-alkanes in asphaltene pyrolysates of biodegraded crude oils from the Liaohe Basin, China. Organic Geochemistry, 31, 1441–1449.
    [Google Scholar]
  57. Yan, L.J. & Zheng, M.P.
    2015. Influence of climate change on saline lakes of the Tibet Plateau, 1973–2010. Geomorphology, 246, 68–78.
    [Google Scholar]
  58. Yang, M.Y., Jeon, C.W., Yang, M.K., Lee, S.H. & Wakita, H.
    1997. Analysis of the organic matter in oil shales distributed in Korea. Analytical Sciences, 13, 433–436.
    [Google Scholar]
  59. Yang, R.F., Cao, J., Hu, G. & Fu, X.G.
    2015. Organic geochemistry and petrology of Lower Cretaceous black shales in the Qiangtang Basin, Tibet: Implications for hydrocarbon potential. Organic Geochemistry, 86, 55–70.
    [Google Scholar]
  60. Yin, A. & Harrison, T.M.
    2000. Geologic evolution of the Himalayan–Tibetan orogen. Annual Reviews of Earth and Planetary Science, 28, 211–280.
    [Google Scholar]
  61. Yu, N.X. & Gray, G.R.
    1998. Analysis of the positions of substitution of acetate and butyrate groups in cellulose acetate–butyrate by the reductive-cleavage method. Carbohydrate Research, 312, 225–231.
    [Google Scholar]
  62. Zeng, Y.H., Fu, X.G., Zeng, S.Q. & Du, G.
    2013. Upper Triassic potential source rocks in the Qiangtang Basin, Tibet: Organic geochemical characteristics. Journal of Petroleum Geology, 36, 237–255.
    [Google Scholar]
  63. Zhao, Z.Z., Li, Y.T., Ye, H.F. & Zhang, Y.W.
    2000. Oil and Gas Generation of Mesozoic Marine Source Rock in the Qinghai–Tibet Plateau. Science Press, Beijing, China [in Chinese].
    [Google Scholar]
  64. Zhu, Y.M., Weng, H.X., Su, A.G., Liang, D.G. & Peng, D.H.
    2005. Geochemical characteristics of Tertiary saline lacustrine oils in the western Qaidam Basin, northwest China. Applied Geochemistry, 20, 1875–1889.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2015-062
Loading
/content/journals/10.1144/petgeo2015-062
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error