1887
Volume 29, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

The non‐unique variability highlighted by Burgess & Prince (. 2015, , 351) (i.e. the origin and timing of maximum flooding surfaces, maximum regressive surfaces and subaerial unconformities; the process of topset aggradation in relation with the various types of shoreline trajectory; and the multiple controls that may affect the progradation and retrogradation of a shoreline) is irrelevant to the workflow of sequence stratigraphy. What is relevant is the observation of the unique stratal geometries that are diagnostic to the definition of all units and surfaces of sequence stratigraphy. In downstream‐controlled settings, these unique stratal stacking patterns relate to the forced regressive, normal regressive and transgressive shoreline trajectories. Multiple controls interplay during the formation of each type of stacking pattern, including accommodation, sediment supply and the energy of the sediment‐transport agents. This interplay explains the non‐unique variability, but does not change the unique criteria that afford a consistent application of sequence stratigraphy. Failure to rationalize the non‐unique variability within the context of unique stratal geometries is counterproductive, and obscures the simple workflow of sequence stratigraphy.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12192
2016-07-13
2024-03-29
Loading full text...

Full text loading...

References

  1. Blum, M.D. (1994) Genesis and architecture of incised valley fill sequences: a Late Quaternary example from the Colorado River, Gulf Coastal Plain of Texas. In: Siliciclastic Sequence Stratigraphy: Recent Developments and Applications (Ed. by P.Weimer & H.W.Posamentier ) AAPG Mem., 58, 259–283.
    [Google Scholar]
  2. Blum, M.D. & Price, D.M. (1998) Quaternary alluvial plain construction in response to glacio‐eustatic and climatic controls, Texas Gulf coastal plain. In: Relative Role of Eustasy, Climate and Tectonism in Continental Rocks (Ed. by K.W.Shanley & P.J.McCabe ) SEPM Spec. Publ., 59, 31–48.
    [Google Scholar]
  3. Blum, M.D. & Törnqvist, T.E. (2000) Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology, 47, 2–48.
    [Google Scholar]
  4. Burgess, P.M. & Prince, G.D. (2015) Non‐unique stratal geometries: implications for sequence stratigraphic interpretations. Basin Res., 27, 351–365.
    [Google Scholar]
  5. Catuneanu, O. (2003) Sequence stratigraphy of clastic systems. Geol. Assoc. Canada, Short Course Notes, 16, 248.
    [Google Scholar]
  6. Catuneanu, O. (2006) Principles of Sequence Stratigraphy, p. 386. Elsevier, Amsterdam.
    [Google Scholar]
  7. Catuneanu, O. & Elango, H.N. (2001) Tectonic control on fluvial styles: the Balfour Formation of the Karoo Basin, South Africa. Sediment. Geol., 140, 291–313.
    [Google Scholar]
  8. Catuneanu, O. & Zecchin, M. (2013) High‐resolution sequence stratigraphy of clastic shelves II: controls on sequence development. Mar. Petrol. Geol., 39, 26–38.
    [Google Scholar]
  9. Catuneanu, O., Willis, A.J. & Miall, A.D. (1998) Temporal significance of sequence boundaries. Sediment. Geol., 121, 157–178.
    [Google Scholar]
  10. Catuneanu, O., Sweet, A.R. & Miall, A.D. (1999) Concept and styles of reciprocal stratigraphies: western Canada foreland basin. Terra Nova, 11, 1–8.
    [Google Scholar]
  11. Catuneanu, O., Hancox, P.J., Cairncross, B. & Ribidge, B.S. (2002) Foredeep submarine fans and forebulge deltas: orogenic off‐loading in the underfilled Karoo Basin. J. Afr. Earth Sci., 35, 489–502.
    [Google Scholar]
  12. Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C. (2009) Towards the standardization of sequence stratigraphy. Earth Sci. Rev., 92, 1–33.
    [Google Scholar]
  13. Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A. & Tucker, M.E. (2011) Sequence stratigraphy: methodology and nomenclature. Newsl. Stratigr., 44 (3), 173–245.
    [Google Scholar]
  14. Csato, I. & Catuneanu, O. (2012) Systems tract successions under variable climatic and tectonic regimes: a quantitative approach. Stratigraphy, 9, 109–130.
    [Google Scholar]
  15. Fanti, F. & Catuneanu, O. (2010) Fluvial sequence stratigraphy: the Wapiti Formation, west‐central Alberta, Canada. J. Sediment. Res., 80, 320–338.
    [Google Scholar]
  16. Fiduk, J.C., Weimer, P., Trudgill, B.D., Rowan, M.G., Gale, P.E., Phair, R.L., Korn, B.E., Roberts, G.R., Gafford, W.T., Lowe, R.S. & Queffelec, T.A. (1999) The Perdido Fold Belt, Northwestern Deep Gulf of Mexico, Part 2: seismic stratigraphy and petroleum systems. AAPG Bull., 83, 578–612.
    [Google Scholar]
  17. Helland‐Hansen, W. & Hampson, G.J. (2009) Trajectory analysis: concepts and applications. Basin Res., 21, 454–483.
    [Google Scholar]
  18. Helland‐Hansen, W. & Martinsen, O.J. (1996) Shoreline trajectories and sequences: description of variable depositional‐dip scenarios. J. Sediment. Res., 66, 670–688.
    [Google Scholar]
  19. Holbrook, J. (1996) Complex fluvial response to low gradients at maximum regression: a genetic link between smooth sequence‐boundary morphology and architecture of overlying sheet sandstone. J. Sediment. Res., 66, 713–722.
    [Google Scholar]
  20. Holbrook, J., Scott, R.W. & Oboh‐Ikuenobe, F.E. (2006) Base‐level buffers and buttresses: a model for upstream versus downstream control on fluvial geometry and architecture within sequences. J. Sediment. Res., 76, 162–174.
    [Google Scholar]
  21. Leckie, D.A. (1994) Canterbury Plains, New Zealand ‐ Implications for sequence stratigraphic models. AAPG Bull., 78, 1240–1256.
    [Google Scholar]
  22. Løseth, T.M. & Helland‐Hansen, W. (2001) Predicting the pinchout distance of shoreline tongues. Terra Nova, 13, 241–248.
    [Google Scholar]
  23. Martinsen, O.J. & Helland‐Hansen, W. (1995) Strike variability of clastic depositional systems: does it matter for sequence stratigraphic analysis?Geology, 23, 439–442.
    [Google Scholar]
  24. Mial, A.D., Catuneanu, O., Vakarelov, B.K. & Post, R. (2008) The Western Interior Basin. In: The Sedimentary Basins of the United States and Canada. Sedimentary Basins of the World (Series Editor: K.J. Hsu), (Ed. by A.D.Miall ), pp. 329–362. Elsevier, Amsterdam.
    [Google Scholar]
  25. Neal, J. & Abreu, V. (2009) Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782.
    [Google Scholar]
  26. Posamentier, H.W. & Allen, G.P. (1999) Siliciclastic sequence stratigraphy ‐ Concepts and applications. SEPM Conc. Sediment. Paleont., 7, 210.
    [Google Scholar]
  27. Posamentier, H.W. & Morris, W.R. (2000) Aspects of the stratal architecture of forced regressive deposits. In: Sedimentary Responses to Forced Regressions (Ed. by D.Hunt & R.L.Gawthorpe ) Geol. Soc. London, Spec. Publ., 172, 19–46.
    [Google Scholar]
  28. Prince, G.D. & Burgess, P.M. (2013) Numerical modeling of falling‐stage topset aggradation: implications for distinguishing between forced and unforced regressions in the geological record. J. Sediment. Res., 83, 767–781.
    [Google Scholar]
  29. Shanley, K.W. & McCabe, P.J. (1994) Perspectives on the sequence stratigraphy of continental strata. AAPG Bull., 78, 544–568.
    [Google Scholar]
  30. van Wagoner, J.C., Mitchum, R.M., Campion, K.M. & Rahmanian, V.D. (1990) Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Met. Explor., 7, 55.
    [Google Scholar]
  31. Zecchin, M. (2007) The architectural variability of small‐scale cycles in shelf and ramp clastic systems: the controlling factors. Earth‐Sci. Rev., 84, 21–55.
    [Google Scholar]
  32. Zecchin, M. & Catuneanu, O. (2013) High‐resolution sequence stratigraphy of clastic shelves I: units and bounding surfaces. Mar. Petrol. Geol., 39, 1–25.
    [Google Scholar]
  33. Zecchin, M. & Tosi, L. (2014) Multi‐sourced depositional sequences in the Neogene to Quaternary succession of the Venice area (northern Italy). Mar. Petrol. Geol., 56, 1–15.
    [Google Scholar]
  34. Zecchin, M., Brancolini, G., Tosi, L., Rizzetto, F., Caffau, M. & Baradello, L. (2009) Anatomy of the Holocene succession of the southern Venice Lagoon revealed by very high resolution seismic data. Cont. Shelf Res., 29, 1343–1359.
    [Google Scholar]
  35. Zecchin, M., Caffau, M., Tosi, L., Civile, D., Brancolini, G., Rizzetto, F. & Roda, C. (2010) The impact of Late Quaternary glacio‐eustasy and tectonics on sequence development: evidence from both uplifting and subsiding settings in Italy. Terra Nova, 22, 324–329.
    [Google Scholar]
  36. Zecchin, M., Civile, D., Caffau, M., Sturiale, G. & Roda, C. (2011) Sequence stratigraphy in the context of rapid regional uplift and high‐amplitude glacio‐eustatic changes: the Pleistocene Cutro Terrace (Calabria, southern Italy). Sedimentology, 58, 442–477.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12192
Loading
  • Article Type: Article Commentary

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error