1887

Abstract

Summary

In this study, we used the Bayesian method of prior and posterior probabilities to estimate hazard parameters in future 5, 25, 50 and 100 years for Cyprus, Southern Turkey. The earthquake hazard parameters estimated as the maximum regional magnitude (Mmax), β value and seismic activity rate or intensity (λ) and their uncertainties. We divided into six different seismic source zones based on epicenter distribution, tectonic, seismicity, geology, faults in Cyprus. While the highest magnitude value is calculated in Aksu thrust zone (zone 6), the lowest value is calculated in continuing of east Cyprus Arc zone (zone 4). The “quantiles” of “apparent” and “true” magnitudes are calculated at next time intervals of 5, 25, 50, and 100 years. The confidence limits of probability levels of 50, 70 and 95 % are determined for the 6 different seismic source zones. According to earthquake hazard parameters, Aksu Thrust Zone is estimated more highest seismicity active zone in comparison with other zones. Aksu Thrust Zone is determined an earthquake at 7.20 maximum magnitude with 95% occurrence probability in future 100 years. This work will guide scientists in earthquake hazard studies for Cyprus and will be useful for the earthquake hazard of Cyprus.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201702587
2017-11-05
2024-04-19
Loading full text...

Full text loading...

References

  1. AmbraseysNN, AdamsRD
    (1992) Seismicity of the Cyprus region. Imperial College, ESEE Research Report 92–9, London, 47–67.
    [Google Scholar]
  2. BarkaAA
    , (1992) The North Anatolian Fault Zone. Ann. Tecton.6, 164–195.
    [Google Scholar]
  3. BayrakY, TürkerT
    , (2015) The determination of earthquake hazard parameters deduced from Bayesian approach for different seismic source regions of Western Anatolia. Pure Appl Geophys. doi:10.1007/s00024‑015‑1078‑x.
    https://doi.org/10.1007/s00024-015-1078-x [Google Scholar]
  4. , (2016) The Determination of Earthquake Hazard Parameters Deduced from Bayesian Approach for Different Seismic Source Regions of Western Anatolia, Pure and Appl. Geophy, 173, 205–220.
    [Google Scholar]
  5. , (2017) Evaluating of the earthqauke hazard parameters with Bayesian method for the different seismic source regions of the North Anatolian Fault Zone, Natural Hazards, 85, 379–401.
    [Google Scholar]
  6. ComninakisPE, PapazachosBC
    (1972) Seismicity of the eastern Mediterranean ridge. Bull Geol Soc Am83: 1093–1102. doi:10.1130/0016‑7606(1972)83[1093:SOTEMA]2.0.CO;2.
    https://doi.org/10.1130/0016-7606(1972)83[1093:SOTEMA]2.0.CO;2 [Google Scholar]
  7. KalogerasI, Stavrakakis, G, SolomiK
    (1999) The October 9, 1996 earthquake in Cyprus: seismological, macroseismic and strong motion data. Ann Geofis42: 85–97.
    [Google Scholar]
  8. KetinI
    , (1948) Uber die Tektonisch-mechanischen Folgerungen aus den grossen Anatolischen Erdbeben des letzten Dezenniums. Geol. Rundsch.36, 77–83.
    [Google Scholar]
  9. LePichonX, AngelierJ
    (1981) The Aegean Sea. Philos Trans R Soc Lond Ser A Math Phys Sci300: 357–372.
    [Google Scholar]
  10. KetinI
    , (1969) Kuzey Anadolu Fayi Hakkinda. Bull. Miner. Res. Explor. Inst. Turk.76, 1–25.
    [Google Scholar]
  11. McCluskyS, BalassanianS, BarkaA, DemirC, ErgintavS, GeorgievI, GurkanP, HamburgerM, HurstK, KahleH, KastensK, KekelidzeG, KingR, KotzevV, LenkO, MahmoudS, MihsinA, NadariyaM, OuzounisA, ParadissisD, PeterY, PrilepinM, ReilingerR, SanliI, SeegerH, TealebA, ToksozM, VeisG
    (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res105: 5695–5719.
    [Google Scholar]
  12. McKenzieDP
    (1978) Active tectonics of the Alpine- Himalayan belt: the Aegean Sea and surrounding regions (tectonics of the Aegean region). Geophys J R Astron Soc55: 217–254.
    [Google Scholar]
  13. PapazachosBC, PapaioannouCA
    (1999) Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics308: 193–204. doi:10.1016/S0040‑1951(99)00075‑X.
    https://doi.org/10.1016/S0040-1951(99)00075-X [Google Scholar]
  14. Rao, C.R.
    , (1965) Linear statistical inference and its application. New York, Wiley, pp 1–618.
    [Google Scholar]
  15. RobertsonAHF
    (1990) Ophiolites oceanic crustal analogues. Proc Symp Troodos1987: 235–252.
    [Google Scholar]
  16. SwarbrickRE
    (1993) Sinistral strike-slip and transpressional tectonics in an ancient oceanic setting: the Mamonia Complex, southeast Cyprus. J Geol Soc Lond150: 381–392. doi:10.1144/gsjgs.150.2.0381.
    https://doi.org/10.1144/gsjgs.150.2.0381 [Google Scholar]
  17. ŞaroğluF,
    (1988) Age and pure o ¡set of the North Anatolian Fault. Middle East Tech. Univ. J. Pure Appl. Sci.21, 65–79.
    [Google Scholar]
  18. ŞengörAMC, GörürN, ŞaroğluF,
    (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, K.T., ChristieBlick, N. (Eds.), Strike-slip Deformation, Basin Formation and Sedimentation. Soc. Econ. Paleontol. Mineral. Spec. Publ.37, 227–264.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201702587
Loading
/content/papers/10.3997/2214-4609.201702587
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error