1887
PDF

Abstract

Summary

The presented work is devoted to development of an electromagnetic tool designed to study electrophysical parameters of sedimentary rocks characterized by macroanisotropic properties. Based on new theoretical and engineering ideas, we have proposed, designed and developed an electromagnetic tool with a high spatial resolution. We have developed complexes of algorithms and computer programs for the analysis of the new electromagnetic logging tool signals in spatially inhomogeneous media. The measured electromagnetic signals and their sensitivity functions to electrophysical parameters of the models are studied. With respect to processing and interpretation of the electromagnetic tool data, we have developed algorithms for filtering, transforming signals into apparent parameters, detecting formation boundaries, and numerical inversion aimed at the determination of the parameters of an isotropic and anisotropic formation, taking into consideration the host medium. We provide examples of the test results obtained in a metrological tank with electrolyte, as well as in natural and artificial freshwater reservoirs. A prototype of the electromagnetic tool was designed and created, with further testing of the prototype and its main components on laboratory test facilities and in conditions close to those in boreholes.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201702230
2017-09-11
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/2214-4609/2017/43809.html?itemId=/content/papers/10.3997/2214-4609.201702230&mimeType=html&fmt=ahah

References

  1. Аксельрод, С.М.
    [2012] Методы опережающей навигации при бурении горизонтальных скважин. Каротажник, 219, с. 87–122.
    [Google Scholar]
  2. Глинских, В.Н., Эпов, М.И.
    [2009] Численное моделирование диаграмм электромагнитного каротажа при описании электропроводности тонкослоистых коллекторов. Геология и геофизика, 50(8), с. 941–949.
    [Google Scholar]
  3. [2009] Новый подход к моделированию и инверсии данных электромагнитного каротажа в тонкослоистых коллекторах. Геофизический журнал, 31(4), с. 119–127.
    [Google Scholar]
  4. Каринский, А.Д.
    [2003] Решения прямых задач о поле тороидальной антенны в анизотропной среде. Физика Земли, 1,с. 9–20.
    [Google Scholar]
  5. Каюров, К.Н., Еремин, В.Н., Эпов, М.И., Глинских, В.Н., Сухорукова, К.В., Никитенко, М.Н.
    [2014] Аппаратура и интерпретационная база электромагнитного каротажа в процессе бурения. Нефтяное хозяйство, 12, с. 112–115.
    [Google Scholar]
  6. Могилатов, В.С., Борисов, Г.А.
    [2003] Возбуждение слоистых геоэлектрических сред гармоническим магнитным током. Сибирский журнал индустриальной математики, 6(1), с. 77–87.
    [Google Scholar]
  7. Рытов, С.М.
    [1955] Электромагнитные свойства слоистой среды. ЖЭТФ, 29(5), с. 605–616.
    [Google Scholar]
  8. Табаровский, Л.А., Каганский, А.М., Эпов, М.И.
    [1976] Электромагнитное поле гармоническго источника в анизотропной слоистой среде. Геология и геофизика, 17(3), с. 94–99.
    [Google Scholar]
  9. Эпов, М.И., Глинских, В.Н., Сухорукова, К.В., Никитенко, М.Н., Еремин, В.Н.
    [2015] Численное моделирование и инверсия данных электромагнитного каротажа в процессе бурения и шаблонирования нефтегазовых скважин. Геология и геофизика, 56(8), 1520–1529.
    [Google Scholar]
  10. Эпов, М.И., Никитенко, М.Н., Глинских, В.Н., Еремин, В.Н.
    [2016] Изучение электрической макроанизотропии интервалов наклонно-горизонтальных скважин по данным высокочастотного индукционного каротажа в процессе бурения. Каротажник, 269, с. 94–109.
    [Google Scholar]
  11. Эпов, М.И., Глинских, В.Н., Никитенко, М.Н.
    [2014] Способ измерения удельной электропроводности и электрической макроанизотропии горных пород. Патент на изобретениеRU 2525149.
    [Google Scholar]
  12. Эпов, М.И., Еремин, В.Н., Манштейн, А.К., Петров, А.Н., Глинских, В.Н.
    [2014] Устройство для измерения удельной электропроводности и электрической макроанизотропии горных пород. Патент на изобретениеRU 2528276.
    [Google Scholar]
  13. Эпов, М.И., Еремин, В.Н., Петров, А.Н., Глинских, В.Н.
    [2016] Электромагнитный зонд для каротажа в нефтегазовых скважинах. Патент на изобретениеRU 2583867.
    [Google Scholar]
  14. Эпов, М.И., Еремин, В.Н., Петров, А.Н., Глинских, В.Н., Суродина, И.В., Киселев, В.В., Никитенко, М.Н.
    [2016] Устройство для генерации электромагнитного поля тороидальной катушкой в геологической среде. Патент на изобретениеRU 2579177.
    [Google Scholar]
  15. Эпов, М.И., Еремин, В.Н., Петров, А.Н., Глинских, В.Н., Суродина, И.В., Киселев, В.В.
    [2016] Устройство для регистрации характеристик электромагнитного поля с использованием тороидальных катушек. Патент на изобретениеRU 2578774.
    [Google Scholar]
  16. Эпов, М.И., Еремин, В.Н., Петров, А.Н., Глинских, В.Н.
    [2016] Электромагнитный зонд для каротажа в нефтегазовых скважинах. Патент на промышленный образецRU 97539.
    [Google Scholar]
  17. Arps, J.J.
    [1967] Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem. US Patent3,305,771.
    [Google Scholar]
  18. Clark, B., Bonner, S.D., Jundt, J.A., Luling, M.G.
    [1993] Well logging apparatus having toroidal induction antenna for measuring, while drilling, resistivity of earth formation. US Patent5,235,285.
    [Google Scholar]
  19. Gianzero, S., Bittar, M.
    [2007] Determining formation anisotropy based in part on lateral current flow measurements. US Patent7,227,363.
    [Google Scholar]
  20. Redwine, F.H., Osborn, W.F.
    [1968] Formation resistivity measurement while drilling utilizing physical conditions representative of the signals from a toroidal coil located adjacent the drilling bit. US Patent3,408,561.
    [Google Scholar]
  21. Akselrod, S.M.
    [2012] Advanced geosteering methods when drilling horizontal wells. Karotazhnik, 219, p. 87–122.
    [Google Scholar]
  22. Glinskikh, V.N., Epov, M.I.
    [2009] Conductivity of layered reservoirs in induction data processing: continuous-function approximation. Russian Geology and Geophysics, 50(8), p. 720–725.
    [Google Scholar]
  23. [2009] A new approach to simulation and inversion of electromagnetic logs in thinly bedded reservoirs. Geophysical Journal, 31(4), p. 119–127.
    [Google Scholar]
  24. Karinsky, A.D.
    [2003] Solutions of direct problems for the field of a toroidal antenna in an anisotropic medium. Physics of the Earth, 1, p. 9–20.
    [Google Scholar]
  25. Kayurov, K.N., Eremin, V.N., Epov, M.I., Glinskikh, V.N., Sukhorukova, K.V., Nikitenko, M.N.
    [2014] Electromagnetic-logging-while-drilling equipment and numerical inversion software. Oil industry, 12, p. 112–115.
    [Google Scholar]
  26. Mogilatov, V.S., Borisov, G.A.
    [2003] Excitation of layered geoelectrical media by a harmonic magnetic current. Siberian Journal of Industrial Mathematics, 6(1), p. 77–87.
    [Google Scholar]
  27. Rytov, S.M.
    [1955] Electromagnetic Properties of a layered medium. Journal of experimental and theoretical physics, 29(5), p. 605–616.
    [Google Scholar]
  28. Tabarovsky, L.A., Kagansky, A.M., Epov, M.I.
    [1976] Electromagnetic field of a harmonic source in an anisotropic layered medium. Geology and Geophysics, 17(3), p. 94–99.
    [Google Scholar]
  29. Epov, M.I., Glinskikh, V.N., Sukhorukova, K.V., Nikitenko, M.N., Eremin, V.N.
    [2015] Forward modeling and inversion of LWD induction data. Russian Geology and Geophysics, 2015, 56(8), p. 1194–1200.
    [Google Scholar]
  30. Epov, M.I., Nikitenko, M.N., Glinskikh, V.N., Eremin, V.N.
    [2016] Studying the electric macroanisotropy in deviated and horizontal boreholes according to high-frequency induction logging while drilling data. Karotazhnik, 269, p. 94–109.
    [Google Scholar]
  31. Epov, M.I., Glinskikh, V.N., Nikitenko, M.N.
    [2014] Method for measuring the specific electric conductivity and electrical macroanisotropy of rocks. Invention patentRU 2525149.
    [Google Scholar]
  32. Epov, M.I., Eremin, V.N., Manstein, A.K., Petrov, A.N., Glinskikh, V.N.
    [2014] Device for measuring the specific electrical conductivity and electrical macroanisotropy of rocks. Invention patentRU 2528276.
    [Google Scholar]
  33. Epov, M.I., Eremin, V.N., Petrov, A.N., Glinskikh, V.N.
    [2016] Electromagnetic tool for logging in oil and gas wells. Invention patentRU 2583867.
    [Google Scholar]
  34. Epov, M.I., Eremin, V.N., Petrov, A.N., Glinskikh, V.N., Surodina, I.V., Kiselev, V.V., Nikitenko, M.N.
    [2016] Device for generating an electromagnetic field by a toroidal coil in a geological environment. Invention patentRU 2579177.
    [Google Scholar]
  35. Epov, M.I., Eremin, V.N., Petrov, A.N., Glinskikh, V.N., Surodina, I.V., Kiselev, V.V.
    [2016] Device for recording characteristics of an electromagnetic field using toroidal coils. Invention patentRU 2578774.
    [Google Scholar]
  36. Epov, M.I., Eremin, V.N., Petrov, A.N., Glinskikh, V.N.
    [2016] Electromagnetic tool for logging in oil and gas wells. Patent for industrial designRU 97539.
    [Google Scholar]
  37. Arps, J.J.
    [1967] Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem. US Patent3,305,771.
    [Google Scholar]
  38. Clark, B., Bonner, S.D., Jundt, J.A., Luling, M.G.
    [1993] Well logging apparatus having toroidal induction antenna for measuring, while drilling, resistivity of earth formation. US Patent5,235,285.
    [Google Scholar]
  39. Gianzero, S., Bittar, M.
    [2007] Determining formation anisotropy based in part on lateral current flow measurements. US Patent7,227,363.
    [Google Scholar]
  40. Redwine, F.H., Osborn, W.F.
    [1968] Formation resistivity measurement while drilling utilizing physical conditions representative of the signals from a toroidal coil located adjacent the drilling bit. US Patent3,408,561.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201702230
Loading
/content/papers/10.3997/2214-4609.201702230
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error