1887
Volume 66 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non‐causal ringing artefacts in the pseudo‐spectral solution of first‐order elastic wave equations. However, the straightforward use of a staggered‐grid pseudo‐spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered‐grid finite‐difference method, we propose a modified pseudo‐spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered‐grid pseudo‐spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered‐grid‐based pseudo‐spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered‐grid‐based pseudo‐spectral method can successfully simulate complex wavefields in such anisotropic formations.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12543
2017-06-06
2024-04-20
Loading full text...

Full text loading...

References

  1. BakulinA., GrechkaV. and TsvankinI.2000a. Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set. Geophysics65, 1788–1802.
    [Google Scholar]
  2. BakulinA., GrechkaV. and TsvankinI.2000b. Estimation of fracture parameters from reflection seismic data—Part II: Fractured models with orthorhombic symmetry. Geophysics65, 1803–1817.
    [Google Scholar]
  3. BaleR.A.2002. Staggered grids for 3D pseudospectral modeling in anisotropic elastic media. CREWES Research Report14, 1–14.
    [Google Scholar]
  4. BansalR. and SenM.2008. Finite‐difference modeling of s‐wave splitting in anisotropic media. Geophysical Prospecting56, 293–312.
    [Google Scholar]
  5. BartoloL.D., DorsC. and MansurW.J.2015. Theory of equivalent staggered‐grid schemes: application to rotated and standard grids in anisotropic media. Geophysical Prospecting63, 1–29.
    [Google Scholar]
  6. BenjemaaM., Glinsky‐OlivierN., Cruz‐AtienzaV.M., VirieuxJ. and PipernoS.2007. Dynamic non‐planar crack rupture by a finite volume method. Geophysical Journal International171, 271–285.
    [Google Scholar]
  7. CarcioneJ.M.1991. Domain decomposition for wave propagation problems. Journal of Scientific Computing6, 453–472.
    [Google Scholar]
  8. CarcioneJ.M.1999. Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics64, 1863–1866.
    [Google Scholar]
  9. CarcioneJ.M.2007. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier Ltd.
    [Google Scholar]
  10. CarcioneJ.M., HermanG.C. and KroodeA.P.E.T.2002. Seismic modeling. Geophysics67, 1304–1325.
    [Google Scholar]
  11. ChengJ.B. and FomelS.2014. Fast algorithms of elastic wave mode separation and vector decomposition using low‐rank approximation for anisotropic media. Geophysics79, C97–C110.
    [Google Scholar]
  12. ChengJ.B., WuZ.D., AlkhalifahT., ZouP. and WangC.L.2016. Simulating propagation of decoupled elastic waves using low‐rank approximate mixed‐domain integral operators for anisotropic media. Geophysics81, T63–T77.
    [Google Scholar]
  13. ChungE. and EngquistB.2006. Optimal discontinuous Galerkin methods for wave propagation. SIAM Journal on Numerical Analysis44, 2131–2158.
    [Google Scholar]
  14. CorreaG.J., SpiegelmanM., CarbotteS. and MutterJ.C.2002. Centered and staggered Fourier derivatives and Hilbert transforms. Geophysics67, 1558–1563.
    [Google Scholar]
  15. De BasabeJ.D., SenM.K. and WheelerM.F.2008. The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion. Geophysical Journal International175, 83–93.
    [Google Scholar]
  16. DellingerJ. and EtgenJ.1990. Wave‐type separation in 3‐D anisotropic media. 59th SEG annual international meeting, Expanded Abstracts 977–979.
  17. ErikssonK. and JohnsonC.1991. Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM Journal on Numerical Analysis28, 43–77.
    [Google Scholar]
  18. FirouziK., CoxB.T., TreebyB.E. and SaffariN.2012. A first‐order k‐space model for elastic wave propagation in heterogeneous media. The Journal of the Acoustical Society of America132, 1271–1283.
    [Google Scholar]
  19. FomelS., SavaP., VladI., LiuY. and BashkardinV.2013. Madagascar: open‐source software project for multidimensional data analysis and reproducible computational experiments. Journal of Open Research Software1, e8.
    [Google Scholar]
  20. FornbergB.1987. The pseudospectral method: comparisons with finite differences for the elastic wave equation. Geophysics52, 483–501.
    [Google Scholar]
  21. FornbergB.1988. The pseudospectral method: accurate representation of interfaces in elastic wave calculations. Geophysics53, 625–637.
    [Google Scholar]
  22. IgelH., MoraP. and RiolletB.1995. Anisotropic wave propagation through finite‐difference grids. Geophysics60, 1203–1216.
    [Google Scholar]
  23. KlinP., PrioloE. and SerianiG.2010. Numerical simulation of seismic wave propagation in realistic 3‐D geo‐models with a Fourier pseudo‐spectral method. Geophysical Journal International183, 905–922.
    [Google Scholar]
  24. KomatitschD., BarnesC. and TrompJ.2000. Simulation of anisotropic wave propagation based on a spectral element method. Geophysics65, 1251–1260.
    [Google Scholar]
  25. KomatitschD. and MartinR.2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics72, SM155–SM167.
    [Google Scholar]
  26. KosloffD. and BaysalE.1982. Forward modelling by a Fourier method. Geophysics47, 1402–1412.
    [Google Scholar]
  27. LebedevV.1964. Difference analogues of orthogonal decompositions of basic differential operators and some boundary value problems. I. USSR Computational Mathematics and Mathematical Physics4, 449–465.
    [Google Scholar]
  28. LisitsaV. and VishnevskiyD.2010. Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity. Geophysical Prospecting58, 619–635.
    [Google Scholar]
  29. LisitsaV. and VishnevskiyD.2011. On specific features of the Lebedev scheme in simulating elastic wave propagation in anisotropic media. Numerical Analysis and Applications4, 155–167.
    [Google Scholar]
  30. LisitsaV., TcheverdaV. and VishnevskiyD.2012. Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite‐difference schemes. Computational Geosciences16, 1135–1152.
    [Google Scholar]
  31. LiuY.2013. Globally optimal finite‐difference schemes based on least squares. Geophysics78, T113–T132.
    [Google Scholar]
  32. MoczoP., KristekJ., VavrycukV., VavrycukR. and HaladaL.2002. 3D heterogeneous staggered‐grid finite‐difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bulletin of the Seismological Society of America92, 3042–3066.
    [Google Scholar]
  33. MoczoP., RoberstssonO.A. and EisnerL.2007. The finite‐difference time‐domain method for modeling of seismic wave propagation. In: Advances in Wave Propagation in Heterogeneous Earth, Advances in Geophysics, Vol. 48 (eds. R.S.Wu and V.Maupin ), pp. 421–516.
    [Google Scholar]
  34. MoraP.1986. Elastic finite difference with convolutional operators. Stanford Exploration Project Report48, 277–289.
    [Google Scholar]
  35. OpertoS., VirieuxJ., RibodettiA. and AndersonJ.E.2009. Finite‐difference frequency‐domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media. Geophysics74, T75–T95.
    [Google Scholar]
  36. OzdenvarT. and McMechanG.1996. Causes and reduction of numerical artifacts in pseudo‐spectral wavefield extrapolation. Geophysical Journal International126, 819–829.
    [Google Scholar]
  37. RoberstssonJ.O.1996. A numerical free‐surface condition for elastic/viscoelastic finite‐difference modeling in the presence of topography. Geophysics61, 1921–1934.
    [Google Scholar]
  38. SaengerE.H., GoldN. and ShapiroS.A.2000. Modeling the propagation of the elastic waves using a modified finite‐difference grid. Wave Motion31, 77–92.
    [Google Scholar]
  39. SchoenbergM.1980. Elastic wave behavior across linear slip interfaces. The Journal of the Acoustical Society of America68, 1516–1521.
    [Google Scholar]
  40. SunJ., FomelS. and YingL.2016a. Low‐rank one‐step wave extrapolation for reverse time migration. Geophysics81, S39–S54.
    [Google Scholar]
  41. SunJ., FomelY.S.S. and FowlerP.2016b. Recursive integral time extrapolation of elastic waves using lowrank approximation. 86th SEG annual international meeting, Expanded Abstracts 4145–4151.
  42. TessmerE.1995. 3‐D seismic modelling of general material anisotropy in the presence of the free surface by a Chebyshev spectral method. Geophysical Journal International121, 557–575.
    [Google Scholar]
  43. VirieuxJ.1984. SH‐wave propagation in heterogeneous media: velocity‐stress finite‐difference method. Geophysics49, 1933–1957.
    [Google Scholar]
  44. VirieuxJ., CalandraH. and PlessixR.2011. A review of the spectral, pseudo‐spectral, finite‐difference and finite‐element modelling techniques for geophysical imaging. Geophysical Prospecting59, 794–813.
    [Google Scholar]
  45. WangC.L., ChengJ.B. and ArntsenB.2016. Scalar and vector imaging based on wave mode decoupling for elastic reverse time migration in isotropic and transversely isotropic media. Geophysics81, S383–S398.
    [Google Scholar]
  46. WangT.F. and ChengJ.B.2017. Elastic full‐waveform inversion based on mode decomposition: the approach and mechanism. Geophysical Journal International209, 606–622.
    [Google Scholar]
  47. WangT.F. and ChengJ.B.2017. Elastic full waveform inversion based on mode decomposition: the approach and mechanism. Geophysical Journal International209, 606–622.
    [Google Scholar]
  48. WangY. and TakenakaH.2001. A multidomain approach of the Fourier pseudospectral method using discontinuous grid for elastic wave modeling. Earth, Planets and Space53, 149–158.
    [Google Scholar]
  49. YanJ. and SavaP.2008. Isotropic angle domain elastic reverse time migration. Geophysics73, S229–S239.
    [Google Scholar]
  50. YangD.H., WangL. and DengX.Y.2010. An explicit split‐step algorithm of the implicit Adams method for solving 2‐D acoustic and elastic wave equations. Geophysical Journal International180, 291–310.
    [Google Scholar]
  51. ZhangJ.F. and LiuT.1999. P‐SV‐wave propagation in heterogeneous media: grid method. Geophysical Journal International136, 431–438.
    [Google Scholar]
  52. ZhangQ. and McMechanG.A.2010. 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media. Geophysics75, D13–D26.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12543
Loading
/content/journals/10.1111/1365-2478.12543
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error